

Advances in Telescope Technology: Mirror Alternatives for the Far IR

June 4, 2015

D. Redding

Jet Propulsion Laboratory, California Institute of Technology

Silicon Carbide Primary Mirrors

Actuated Hybrid Mirrors (AHMs)

RL

- 0.5 to 1.35 m size demonstrated
- <14 nm rms SFE demonstrated
- <10 Å microroughness (projected)
- 10-15 kg/m² substrate
- <25 kg/m² total
- Active mirror
 - 37 to 414 actuators
 - Solid state, integrated into SiC substrate
- Testable in 1G to 0G specs
- Made by replication

Superpolished Si/SiC Mirrors (SSMs)

Proposed 4m class mirror

- Passive or active
- Made by casting, joining, cladding and polishing
- Si clad SiC
- <14 nm rms SFE (projected)
- <5 Å microroughness (projected)
- <25 kg/m² total
- If active:
 - 0 to 10,000 actuators
 - Solid state, integrated into SiC substrate
- Active version is testable in 1G to 0G specs
- Silicon carbide (SiC) has superior stiffness, strength, and thermal properties, making it well suited for space optics
- "Actuated Hybrid Mirrors" (AHMs), made by replication using SiC substrates, provide an active option for mirrors up to 1.5 m
- "Superpolished Si/SiC Mirrors" (SSMs) use SiC substrates that can be joined, then clad with Silicon, and then polished, for passive or active mirrors

Silicon Carbide (SiC) for Mirrors

- SiC has many good properties
 - Stiff for the weight
 - Robust

JPL

- High thermal conductivity
- Polishable to <20Å (unclad), and to 2 Å (Si clad)

Units	Aluminum	Beryllium	SiC	ULE	Desire
g/cm3	2.71	1.85	2.95	2.21	Low
GPa	68.3	303	364	67.6	High
KN-m/g	25	164	123	31	High
N-m/g	46	11	24	3.2	High
ppm/°C	22.7	11.4	3.38	±0.03	Low
ppb/°C	100	100	30	10	Low
MW/m	6.9	19	51	44	High
m2/s	6.55	6.07	8.7	0.08	High
MW-m/N	101	63	140	646	High
	Units g/cm3 GPa KN-m/g N-m/g ppm/°C ppb/°C MW/m m2/s MW-m/N	Units Aluminum g/cm3 2.71 GPa 68.3 KN-m/g 25 N-m/g 46 ppm/°C 22.7 ppb/°C 100 MW/m 6.9 m2/s 6.55 MW-m/N 101	UnitsAluminumBerylliumg/cm32.711.85GPa68.3303KN-m/g25164N-m/g4611ppm/°C22.711.4ppb/°C100100MW/m6.919m2/s6.556.07MW-m/N10163	UnitsAluminumBerylliumSiCg/cm32.711.852.95GPa68.3303364KN-m/g25164123N-m/g461124ppm/°C22.711.43.38ppb/°C10010030MW/m6.91951m2/s6.556.078.7MW-m/N10163140	UnitsAluminumBerylliumSiCULEg/cm3 2.71 1.85 2.95 2.21 GPa 68.3 303 364 67.6 KN-m/g 25 164 123 31 N-m/g 46 11 24 3.2 ppm/°C 22.7 11.4 3.38 ± 0.03 ppb/°C 100 100 30 10 MW/m 6.9 19 51 44 m2/s 6.55 6.07 8.7 0.08 MW-m/N 101 63 140 646

 The ESA Herschel 3.5 m Primary Mirror (PM)

Multiple segments joined by brazing

Cryo Mirror Substrate Materials

- Beryllium proven but very slow and expensive (JWST mirrors took 10 years to make)
 - Precision metallurgy required to avoid thermal and mechanical hysteresis
 - Machining and polishing brings difficulties poisonous dust, e.g.
 - High CTE at warmer temperatures necessitates cryo-null figuring
- Aluminum
 - High CTE at warmer temperatures necessitates cryo-null figuring
- Glass ULE, Zerodur, Borosilicate
 - Low CTE at warmer temperatures, not lowest at cryo though
 - Space qualified mirror sizes < 2.4 m (Hubble)
- Composite/CFRP
 - Near-zero CTE from warm to cold temperatures can be achieved
 - Material creep issues probably means mirror must be actuated
 - Surface quality may be a challenge

Cryo Active SiC Mirrors

Replace cryo-null figuring with actuators

- Fabricate and test at warm temperatures, in 1G, to spec performance
- Use actuators to compensate cool-down figure changes (and most other optical errors system-wide)

Reduce mission cost

- By reducing mission mass
- By relaxing fabrication and assembly tolerances
- By reducing or even eliminating cryo testing
- By speeding up I&T
- By reducing mirror cost

Reduce mission risk

- Correct nearly any optical errors that might arise on orbit
- SiC materials are more resilient than glass, lowering risk of failure

Ceraform Silicon Carbide

AOX Ceraform SiC:

- Fugitive core foam mold created by CNC machining
- SiC nanopowder slip fills mold
- Part is freeze-dried
- Mold core is leached out
- First firing creates green state "prefired" part
- Part is machined
- Second firing to full hardness
- Final rough grind of SiC front surface matches the curvature of the mandrel/nanolaminate to ±5 um

Typical finished substrate

Actuated Hybrid Mirrors (AHMs)

AHMs are large mirrors

- PMs or PM segments
- Made by replication

Nanolaminate facesheet

 Multilayer metal foil, made by sputter deposition on a superpolished mandrel

SiC substrate

 Reaction-bonded Ceraform SiC is cast in a mold, fired, then bonded to facesheet

Electroceramic actuators

 Surface-parallel embedded actuators give large stroke and high accuracy, by design

AHMs are low mass and high strength

Areal density < 25 kg/m² including electronics for meter-class AHMs

• AHMs are made by replication for high optical quality and low cost

AcPolished Sic Active Mirrorss)

- AHMs are large mirrors
 - PMs or PM segments
 - Made by replication
- Nanolaminate facesheet
 - Multilayer metal foil, made by sputter deposition on a superpolished mandrel
- SiC substrate

IPL

 Reaction-bonded Ceraform SiC is cast in a mold, fired, then bonded to facesheet

Electroceramic actuators

 Surface-parallel embedded actuators give large stroke and high accuracy, by design

AHMs are low mass and high strength

- Areal density < 25 kg/m² including electronics for meter-class AHMs
- AHMs are made by replication for high optical quality and low cost

Actuators

Sintered body

Electrical Connection (conceptual)

XiRE 0313 Photo, XiRE 0416 similar

Conductive polymer

Top surface: Conformal coating

• AOX actuators use PMN-PT electrostrictive ceramics

100 - 200

 Multiple layers of ceramic and conductive electrode are co-fired to form a solid body

Active PMN Layer

Pt Electrode Layer

Thickness : 2-4 µm

of active layers:

Thickness : 100 – 152 µm

- Conductive polymers for external electrode and wire bonding (no soldering)
- Conformal insulating polymer coating

- High stroke, low voltage
 - ±2.5 um stroke at 20C
 - 0-100V operating range
- Used for astronomical Deformable Mirrors
 - High reliability

Actuator with Mounting Tabs

Cryo Mirror Actuators

Piezoelectric cryo actuators

- Excellent strain at 20C, drops significantly going to <25K
- Can explore poling strategies to reset the 0-volt strain state at target temperature...

Electrostrictive cryo actuators

- PMN/PT, single-crystal shows wide actuation range, with strain dropping 5x from room temperature to 77K (ref. Jiang et al)
- Other materials provide significant strain at cryo, not so much at ambient (ref. Xinetics SBIR-II report)
- Decreased strain could be compensated: by taller stacks of thinner layers in multi-layer actuators; or by mechanical amplification; or...
- Magnetostrictive cryo actuators???
- Athermalization is needed, to compensate actuator/substrate CTE mismatch
 - Athermalizing actuator mounting structures: bi-metallic effect
 - Voltage bias for warm ops, to provide 0V bias for cold ops

JPL AHM Closed Loop Optical Performance

SFE = 1.88 µm RMS

SFE = 0.014 µm RMS

- Wavefront sensing and control technology to command the embedded solid-state actuators gives the active SiC mirror the ability to correct nearly any optical error, occurring anywhere in the optical system
 - Allows relaxation of fabrication and assembly tolerances from optical to mechanical levels, speeding I&T
 - Enables rapid system testing to within required performance levels, even in 1 G, lowering mission risk
- AHMs and active SSMs mirrors can reduce cost, risk and schedule for future astrophysics missions

Polished SiC Mirrors

- Polished SiC mirrors for use in space telescopes
 - Passive (no actuators): polished to final figure
 - Active: high WF control range and accuracy

Leverage AHM technology elements

- Lightweight SiC substrate with high stiffness and strength
- Surface Parallel Actuation with solid-state actuators integrated into SiC rib structure

Technical objectives

- Growth to 4 m size class
- 1 um rms SFE at cryogenic temperatures
- Active to avoid cryo-null figuring
- <20 Å microroughness
- 25 kg/m² substrate, and 30 kg/m² total mass areal density (with elex, actuators, etc.)
- Testable over wide temperature range
- Testable in 1G to 0G specs if active

SiC Joining Methods

- Brazing is a lower-temperature approach to joining large SiC segments
 - Reactive and non-reactive methods are available
 - Introduces small amounts of non-SiC material
 - Excellent joint surface quality and substrate strength can be achieved
- SiC Interlayer Joining requires higher temperatures and a vacuum furnace
 - Can produce isotropic SiC structures, with no discernable joint
 - Excellent substrate strength
- Companies with joining experience:
 - BoosTek (Herschel PM) and CoorsTek
 - Ceramatec
 - AOA Xinetics

SiC Substrate Interlayer Joining

• SiC mirrors can be made from multiple substrates that are joined together

Requirements for joining

High strength

JPL

- Thermal stability
- Polishability across bond joint
- Process scaling to 4m and larger

SiC Interlayer Joining

Metric	Value	Comments
Joint Thickness	5-600 microns	Demonstrated.
Joint Bending Strength	80% of monolithic SiC	Demonstrated.
Joint Shear Strength	80% of monolithic SiC	Demonstrated.
Joint Surface Quality	No voids	Assured by filling and refiring before silicization.
Joint Surface Continuity	<30Å step	Measured after surface
	discontinuity	generation.
Joint Length	30 cm scalable to 4 m	Need to demonstrate.

- Separate segments are prefired, and then joined using a special SiC slip material
- A second prefiring creates a monolithic structure
- Final siliconization firing at high temperature hardens and fully densifies the mirror
- Final join surfaces can be polished without any discontinuity

Photomicrographs of SiC Interlayer Joins

- Unpolished, as-cast surfaces following siliconization firing
- Join width ≅ 0.5 mm

Active Mirror PSFs

Simulated PSFs for a UV telescope, nominally:

- PSFs assessed at 200 nm wavelength
- Detector is critically sampled at 300 nm wavelength
- 400 actuators for control case
- WFE as shown

• AHMs and active SSMs, like Deformable Mirrors generally, have a different distribution of WFE vs. *f* than conventional optics

- Lower error in the low spatial frequencies
- Higher error at and beyond the actuator spatial frequency
- This results in a tighter PSF core, but a raised "halo" in the PSF sidebands
 - Resolution vs. contrast choice drives actuator density