Characterizing the Molecular Interstellar Medium in Galaxies using Archival Herschel Data

Naseem Rangwala
University of Colorado - Boulder
NASA Ames Research Center

Main Collaborators: Jason Glenn (CU)
Julia Kamenetzky (CU)
Phil Maloney (CU)

This work is supported by a NASA ADAP grant

Outline

- Description of the program
- Goals
- Sample
- Methodology / Pipeline
- Preliminary Results (spectra, modeling results, CO SLEDs etc.)
- Conclusions

Description of our Archival Program

Archival (publicly available) survey using photometric and spectroscopic data of all the galaxies (~ 300) observed with HerschelSPIRE's Fourier Transform Spectrometer (FTS).

SPIRE-FTS spectrum of Arp 220

- Continuous spectral coverage . several molecular and atomic species
- \quad spectral resolution $=1.44 \mathrm{GHz} \cdot \quad \mathrm{CO}$ rotational transitions from $\mathrm{J}=4-3$ to $13-12$

Description of our Archival Program

- Archival (publicly available) survey using photometric and spectroscopic data of all the galaxies (~ 300) observed with HerschelSPIRE's Fourier Transform Spectrometer (FTS).
- This sample spans a wide range in the far-infrared luminosity $\left(L_{F I R}\right)$ and galaxy types.

SPIRE- FTS Archival Sample

Description of our Archival Program

- Archival (publicly available) survey using photometric and spectroscopic data of all the galaxies (~ 300) observed with HerschelSPIRE's Fourier Transform Spectrometer (FTS).
- This sample span a wide range in the far-infrared luminosity $\left(L_{F I R}\right)$ and galaxy types.
- CO spectral line energy distributions (SLEDs) from these spectra will be uniformly re-reduced, re-calibrated and modeled to estimate the physical conditions and reservoir of the molecular gas
- Application of consistent methodology for data reduction and modeling across the entire sample will enable accurate comparison between different galaxies

Goals of the Program

- Determine the molecular gas (and dust) properties as a function of $L_{\text {FIR }}$ and galaxy type (starburst, AGN, disks and ellipticals)
- Address the origin of the excitation of warm molecular gas of varying $L_{\text {FIR }}$: Star-Formation vs AGN?
- Compare the gas excitation and dust properties of the local IR luminous galaxies to high-z submm galaxies.
- Explore *Total* $L_{\text {CO }}-L_{\text {FIR }}$ Relation
- Direct measurement of $\left[\mathrm{CO} / \mathrm{H}_{2}\right]$ abundance for warm molecular gas.
- Substantial public database of legacy value for nearby galaxies

CO SLED: diagnostic for Star Formation Vs AGN?

Goals of the Program

- Determine the molecular gas (and dust) properties as a function of $L_{\text {FIR }}$ and galaxy type (starburst, AGN, disks and ellipticals)
- Address the origin of the excitation of warm molecular gas of varying $L_{\text {FIR }}$: Star-Formation Vs AGN?
- Compare the gas excitation and dust properties of the local IR luminous galaxies to high-z submm galaxies.
- Explore *Total* $L_{\text {CO }}-L_{\text {FIR }}$ Relation
- Direct measurement of $\left[\mathrm{CO} / \mathrm{H}_{2}\right]$ abundance for warm molecular gas.
- Substantial public database of legacy value for nearby galaxies

Pipeline Schematic

Pipeline developed by J. Kamenetzky

DATA

M82 (Starburst)

This survey will focus only on CO, CI and NII lines. CO and CI for characterizing molecular gas and NII as a star formation tracer

NGC 6240 (LIRG/AGN)

MRK 231 (ULIRG/AGN)

UGC 05101

(LIRG/AGN)

Modeling and Preliminary Results

Non-LTE Radiative Transfer Modeling Arp 220

- low-J CO are tracing cold molecular gas
- Mid- to high-J CO are tracing warm gas.
- $\quad \mathrm{T}_{\text {kin }}($ warm CO$)=\mathrm{T}_{\text {kin }}\left(\right.$ warm $\left.\mathrm{H}_{2}\right)$
- $\quad \mathrm{M}_{\text {gad }}$ (warm) $\sim 10 \% \mathrm{M}_{\text {acad }}$ (cold)
- $\quad \mathrm{L}_{\mathrm{CO}}($ cold $) \sim 8 \%$ Total L_{CO}

 Mue triangles are average line fuxes from
arison ano now meaturements by Z-spec
ed CO line temperatures There ed CO line temperatures. There are two
tod line traced by the mid- J to high-J
the low-J lines.

Radiativelìnanisfex cole maintajned by Phil Maloney

Arp 220: Excitation source of warm molecular gas

- Observed ratio: Total $L_{\mathrm{CO}} / L_{\mathrm{FIR}} \sim 10^{-4}$
- $\quad\left[\mathrm{T}, \mathrm{n}\left(\mathrm{H}_{2}\right)\right]_{\text {cold }}=\left[50 \mathrm{~K}, 1000 \mathrm{~cm}^{-3}\right]$ and $\left[\mathrm{T}, \mathrm{n}\left(\mathrm{H}_{2}\right)\right]_{\text {warm }}=[1350$ $\mathrm{K}, 1000 \mathrm{~cm}^{-3}$]
- This ratio along with tight constraints on $T_{\text {kin }}$ and $n\left(\mathrm{H}_{2}\right)$ rules out PDRs, XDRs and Cosmic ray models
- Require a non-ionizing source of energy: A small fraction of mechanical energy from supernovae and stellar winds
 al. 2012; Hailey-Dunsheath et al. 2012), M82 (Kamenetzky et al. 2012), NGC 4038/39 (Schirm et al. in prep.) and Cloverleaf (Bradford et al. 2009)

Preliminary NGC6240: CO Modeling

- $\mathrm{T}_{\text {kin }}($ warm CO $) \sim 1580 \mathrm{~K}$
- $\mathrm{T}_{\text {kin }}$ (cold CO) ~ 50
- conling rate ~ $35 \mathrm{~L}_{8} / \mathrm{M}_{8}$

Preliminary
 M82: CO Modeling Results

- $\mathrm{T}_{\text {kin }}($ warm CO$) \sim 500 \mathrm{~K}=\mathrm{T}_{\text {kin }}\left(\right.$ warm $\left.\mathrm{H}_{2}\right)$
- $\mathrm{T}_{\text {kin }}($ cold CO$) \sim 35 \mathrm{~K}$
- cooling_rate $\sim 1.4 \mathrm{~L}_{ه} / \mathrm{M}_{\bullet}$

CO SLEDs

Using a large sample we witll establish if the shape and brightness of the CO SLED in galaxies can be used as a diagnostic between dominant sources of energy affecting their molecular ISM and star formation.

Dust Modeling

Arp220

NGC 6240

wavelength (microns, observed)

$$
S(\lambda)=\frac{N_{\mathrm{bb}}\left(1-e^{-\frac{\lambda_{0}}{\lambda} \beta}\right)(c / \lambda)^{3}}{e^{\frac{h c}{k T}}-1}+N_{\mathrm{pl}} \lambda^{\alpha} e^{-\left(\lambda / \lambda_{c}\right)^{2}}
$$

Conclusions

- Molecular gas and dust survey of nearby galaxies using Herschel-SPIRE.
- Systematic re-processing and modeling; Pipeline is almost complete.
- Previous studies have shown that the high-J CO lines are tracing the warm molecular ISM and dominate the CO luminosity and hence the cooling.
- Observed $\mathrm{L}_{\mathrm{CO}} / \mathrm{L}_{\mathrm{FIR}}$ combined with physical properties of the molecular gas will enable us to constrain the dominant power source (AGN or SF (PDR, XDR, shocks etc.)) in these galaxies.
- Investigate global properties of the molecular gas and dust as function of $\mathrm{L}_{\text {FIR }}$ and galaxy types.

Extra Slides

Arp 220: Excitation source of warm molecular gas

- Observed ratio: Total $L_{\mathrm{CO}} / L_{\text {FIR }} \sim 10^{-4}$
- This ratio along with tight constraints on $T_{\text {kin }}$ and $n\left(\mathrm{H}_{2}\right)$ rules out PDRs, XDRs and Cosmic rays
- Require a non-ionizing source of energy: Mechanical energy from supernovae and stellar winds to satisfy a cooling rate $=20 \mathrm{~L}_{\odot} / \mathrm{M}_{\odot}$

UGC 05101

(LIRG/AGN)

Herschel SPIRE-FTS Spectrum of UGCO5101

CO SLED: diagnostic for Star Formation Vs AGN?

- Models have suggested that the shape of the CO SLEDs can be used to discriminate between SF and AGN [e.g. Spaans \mathcal{E} Meijerink (2008); Lagos et al. (2012)].
- Observations:

Starburst - CO SLEDs turn over after J = 6-5

 shape and brightness of the CO SLED in galaxies can be used as a diagnostic between dominant sources of energy affecting their molecular ISM and star formation.

Arp220 [Rangwala et al. (2011)] and M82 [Panuzzo, Rangwala et al. (2010); Kamenetzky et al. 2012 (incl. N. Rangwala)]. Similar turn over observed in high-z submm galaxies [Bothwell et al. (2013)].

- AGN: CO SLED remains flat after $\mathrm{J}=6-5$ [e.g.,Van der werfet al. (2010)]

LCO - LFIR relation

$\mathrm{L}_{\mathrm{CO}}-\mathrm{L}_{\mathrm{FIR}}$ relation

$\mathrm{L}_{\mathrm{CO}}-\mathrm{L}_{\mathrm{FIR}}$ relation

3060 M. S. Bothwell et al.
4.3 The $L_{\mathrm{CO}}^{\prime}-L_{\mathrm{FIR}}$ correlation

A useful quantity to measure for our sample of SMGs is the efficiency with which their molecular gas is being converted into stars.
The SFE is sometimes defined as SFR $/ M\left(H_{2}\right)$ - the inverse of the gas Thepletion time - but here we take the approach of parameterizing this as a ratio of observable quant titess L_{FIR} and $L_{\mathrm{C} \text { Co(1- }-1 \text {. }}^{\text {The }}$
There has been debate, in recent years, as to the value of the Here has been debate, in recent years, as to the value of the
slope of the $L_{\text {Cont-1-0 }}-L_{\text {FR }}$ relation. Whereas, arlier we discussed
the difference in slo (in order to derive the median SLED), here we present the relation between the derived ${ }^{12} \mathrm{CO} J=1-0$ luminosity and $L_{\text {FIR }}-$ a relation which describes, in observable terms, the relationship between the
luminosity due to star formation and the total gas content (Section luminosity due to star formation and the total gas content. (Section
2.1 .1 contains a discussion of the uncertainties inherent to deriving IR luminosities for sources such as ours.).
In their study of 12 SMGs, Greve al al.
In their study of 12 SMGs , Greve et al. (2005) found a slope of
the relation between $L_{\text {FIV }}$ and $L_{\text {re }}$ or 0.62 ± 0.08 fita combined the relation between $L_{\text {Fir }}$ and $L_{\text {COOI }}^{\text {CoI) of } 0.62 \pm 0.08 \text { fit a combined }}$
sample of lower redshift LIRGs, ULIRGs and SMGs - identical to the slope derived for the local LIRGs/ULIIGS alone. The small
number of galaxies in Greve et al (2005), however preved number of galaxies in Greve et al. (2005), however, prevented a fulf
investigation of the SFE slopes within the SMG population itself. Some recent authors, however, have found the slope to be closer to linear-Genzel et al. (2010) found that a slope of 0.87 ± 0.09 fits a combined sample of SMGs across a wide range of redshifts.
Fig. 6 shows the L^{\prime}. $L_{\text {FIr }}$ relation for our sample of SM Included in the plot are data points for local (U)LIRGs, as mea sured by Sanders, Scoville \& Soifer (1991) and Solomon et al. (1997). We also show three power-law fits to the local (U)LIRG
alone, the SMGs alone and the combined sample. We find the SMGs to lie slightly above the best-fitting (sub-linear) line for local (ULIRGs, necessitating a steeper slope. The power-law fit to the
local (U)LIRGs alone has a slope of 0.79 ± 0.08, while the fit to local (U)LIRGs alone has a slope of 0.79 ± 0.08, while the fit to
the combined sample of SMGs and (U)LIRGS has a slope of $0.83 \pm$ 0.09. It can also be seen that a fit to the SMG sample alone has an even steeper slope of 0.93 ± 0.14 - very close to linear - al-
though, within the uncertainty, this is consistent with the slope for though, within the uncertainty, this is consistent with the slope for
the combined samples. These results are in good agreement with

Figure 6. The SFE, $L_{\text {C }}^{\prime}$ versus $L_{\text {FRP }}$. Included in the plot are two samples
 it thre combind sais are 0.93
most previous findings; the near-linear slopes (which agree well with those found by Genzel et al. 2010) would imply a roughly onstant gas depletion timeHowever, we caution
high- - upp $^{12} \mathrm{CO}$ transitions to o ${ }^{12} \mathrm{CO}$ analysis requires extrapolating fron ndertaken a similar analysis based solely on directly observec
${ }^{2} \mathrm{CO}(1-0)$ observations and homogeneously derived far-IR luminosities and conclude that the $L_{\text {COO(1-0) }}^{\prime}-L_{\text {FIR }}$ relation has a slope substantially below unity. We therefore suggest that it is difficult to raw any strong conclusions from high- $J_{u p}$ observations about the he Kennicutt-Schmidt relation in these galaxies, as these are to uncertain without brightness temperature ratio measurements fo

Part of the power of observations of ${ }^{12} \mathrm{CO}$ emission from highredshift galaxies is that they provide a tool to derive the mass of the reservoir of molecular gas in these systems. This is of critical mportance because this reservoir is the raw material from which the future stellar mass in these systems is formed. Along with the
existing stellar population, it therefore gives some indication of the potential stellar mass of the resulting galaxy at the end of the tarburst phase (subject, of course, to the unknown contributio om in-falling and out-flowing material.
Estimating the mass of H_{2} from the
Eeps. First, luminosities originating from must be transformed to an equivalent $t^{12} \mathrm{CO} I=1-0$ lumi ${ }^{\text {up }} \geqq$ sing a brightness ratio. We have derived the necessary brightnes ratios using our composite SLED as discussed in Section 3 above. Once an $L_{\mathrm{CO}}^{\prime}(--0)$ has been determined, it must be converted into H_{2} mass α is in units of $\mathrm{M}\left(\mathrm{K} \mathrm{km} \mathrm{s}^{-1} \mathrm{pc}^{2}\right)^{-1}$ (when disussing α hereafter, we omit these units for the sake of brevity). This can the be converted to a total gas mass, including $\mathrm{He}, M_{\text {gas }}=1.36 M\left(\mathrm{H}_{2}\right)$.
There is a large bol There is a large body of work, both observational and theoretica licity or environmental dependence - of α (e.g. Young \& Scoville 1991; Solomon \& Vanden Bout 2005; Liszt, Pety \& Lucas 2010 Bolato et al. 2011; Genzel et al. 2012; Narayanan et al. 2111; Pa
padopoulos et al. 2012). While secular discs such as the Milky Wa have a relatively 'high' value of $\alpha \sim 3-5$, using this value for the gas in nuclear discs/rings within merging systems and starbursts a
~ 0 leads to the molecular gas mass sometimes exceeding thei $z \sim 0$ leads to the molecular gas mass sometimes exceeding their
dynamical masses. As such, a lower value - motivated by a radiative transfer model of the ${ }^{12}$ CO kinematics - is typically used
for the intense nuclear starbursts in the most IR-Iuminous local for the intense nuclear starbursts in the most IR-Iuminous local
systems: $\alpha \sim 0.8$, with a range of $0.3-1.3$ (Downes \& Solomon systems: $\alpha \sim 0.8$, with a range of 0.3-1.3 (Downes \& Solomon
1998). However, some recent results have suggested that this value might, in fact, underestimate the true value in high-redshift SMGs.
Bothwell et al. (2010) found that applying the canonical ULIRG Bothwell et al. (2010) found that applying the canonical ULIRG
value to two $z \sim 2$ SMGs resulted in gas fractions of <10 per cent which appears incongruous given their extreme SFRs. Similarly, a yynamical analysis has been undertaken on the high-redshift SMG
SMM J2135-0102, by Swinbank et al. (2011) yielding a highe MM J2135-0102, by Swinbank et al. (2011) yielding a highe ellue, $\alpha \sim 2$ [supported by
eling Danielson et al. 2011].
Here we adopt a value of $\alpha=1.0$, and caution that all gas masses
derived are dependent on this uncertain parameter Using this value derived are dependent on this uncertain parameter. Using this value
the resulting mean H_{2} mass of our sample SMGs fincluding limits

SPIRE-FTS spectrum of Arp 220

. \quad spectral resolution $=1.44 \mathrm{GHz} \quad . \quad \mathrm{CO}$ rotational transitions from $\mathrm{J}=4-3$ to $13-12$

