28 June, 2013 LTD-15 @ Pasadena, California

High-resolution Kaonic-atom X-ray Spectroscopy with Transition-edge-sensor Microcalorimeters

RIKEN Shinji Okada

Collaboration

NIST (U.S.)

D.A. Bennett

W.B. Doriese

J.W. Fowler

K.D. Irwin

D.S. Swetz

D.R. Schmidt

J.N. Ullom

RIKEN (Japan)

S. Okada

M. Sato

S. Yamada (ASTRO-H)

KEK (Japan)

S. Ishimoto

INFN - LNF (Italy)

H. Tatsuno

$$I(J^P) = \frac{1}{2}(0^-)$$

the lightest hadron containing strange quark

anti-Kaon :
$$\overline{K}$$
 strange
quark
 $K^+ = u\overline{s}, \ K^0 = d\overline{s}, \ \overline{K}^0 = \overline{d}\overline{s}, \ K^- = \overline{u}\overline{s},$
Negative charged Kaon

For charged kaon :

mass	493.677(16) MeV	ex) ~1000 times heavier than electron		
lifetime	~ 12 nsec	ex) ~1/200 times shorter than muon		

K - Nucleus strong interaction at low energy

Nucleus

hy

K - Nucl. interaction at low energy?

Quantum ChromoDynamics (QCD) becomes non-perturbative at low energy

- impossible to use perturbative methods
- ➡ (approximative) symmetries are good guidelines to understand the hadron dynamics

quark	mass [MeV]	symmetry		
up	~ 2	chiral	quark mass zero limit	
down	~ 5	symmetry		
strange	~ 100	intermediate		
charm	~ 1,300	heavy-quark	quark mass	
bottom	~ 4,200	symmetry	, infinity	
top	~ 170,000	weak decay w/o forming hadrons		

(K⁻ is the lightest hadron containing strange quark.)

 "K⁻-Nucl." systems are suitable testing grounds for investigating the interplay between spontaneous and explicit chiral symmetry breaking.

.

/ Dense matter :

- ✓ Neutron star :
- ✓ Origin of mass :

higher density beyond normal nuclearmatter density?

D

Kaon is a strong candidate of hadrons composing inside of neutron star.

the in-medium mass modification effect as a function of matter density?

Phys. Lett. B587, 167 (2004)

Why |

K - Nucl. interaction at low energy?

Quantum ChromoDynamics (QCD) becomes non-perturbative at low energy

.....

Strongly attractive!

- impossible to use perturbative methods
- (approximative) sympetries are good guidelines to understand the hadron dynamics Depending on how much of

quark	mass [MeV]	Kymmetry potontial/da	nt
up	~ 2		μ
down	~ 5	symmetry zero limit KNu	cl."
strange	~ 100)oon or Shall	pr-
charm	~ 1,300		
bottom	~ 4,200	symmetry ^{infinity} chiral s	
	~ 170,000	weak decay w/o forming hadrons	

Deeply bound K⁻ cluster

estigating the interplay

us and explicit

Phys. Lett. B587, 167 (2004)

Dense matter :

- ✓ Neutron star :
- ✓ Origin of mass :

higher density beyond normal nuclearmatter density?

D

Kaon is a strong candidate of hadrons composing inside of neutron star.

the in-medium mass modification effect as a function of matter density?

do we study the How \overline{K} - Nucl. interaction at low energy?

Kaon low-energy scattering experiment is difficult due to the short lifetime (~12 nsec)

Kaon-nucleus bound states

Coulomb bound state - Kaonic atom -

principal quantum number

 $n \sim sqrt(M^*/m_e) \sim 25$ (M* : K-p reduced mass ~ 323 MeV)

Kaonic atom

3) Strong interaction

4) nuclear absorption

How we observe the strong interaction ?

Data & a theory for $Z \ge 2$ K-atom

Shift and width for last orbit

Plot w/error bar ... experimental data

Solid line ... a theoretical calc.

S.Hirenzaki, Y.Okumura, H.Toki, E.Oset, and A.Ramos Phys. Rev. C 61 055205 (2000)

Two theoretical approaches

Next-generation K-atom experiment

Next-generation K-atom exp.

1. Crystal spectrometer

pionic atom exp. : D. Gotta (Trento'06)

2. Microcalorimeter

W.B. Doriese, TES Workshop @ ASC (Portland), Oct 8, 2012

-> small acceptance

Why TES Microcalorimeter ?

1. High collection efficiency

- Multi device (Array)
- Large absorber

2. Compact and portable

limited beam time, then need to remove (at J-PARC, DAΦNE etc.)

NISTTES array system

... a typical Silicon detector

used in the previous K-atom exp.

W.B. Doriese, TES Workshop @ ASC (Portland), Oct 8, 2012

REF: talk by Daniel Swetz (NIST) on Wednesday in this LTD-15 conf.

J-PARC (Japan)

J-PARC @ Tokai

· 120 km from Tokyo

J-PARC (Japan)

Japan Proton Accelerator Research Complex = J-PARC

J-PARC (Japan)

Side view (from downstream)

A simple simulation

by H.Tatsuno

K-⁴He x-rays from Liq. ⁴He Top view-100 TES: 5eV FWHM 90 TES (Bi 20 mm², 5 um thick) 80 6cm 70 Counts / 1 eV Silicon Drift Detector(SDD) : 60 K- beam 190 eV FWHM Compton **50**F (Si 100 mm², 400um thick) scattered **40** X-rays 30 Liq. He (~ 0.1 L) 20 10

Both have been serious problems in the prev. experiments.

Rough estimation of stat. accuracy

	K-4He Kα events	detector resolution (FWHM)	stat. accuracy of determining the central value of 6 keV
KEK-E570 with SDD	1500 events	190 eV	2 eV = 190 / 2.35 / sqrt(1500)
TES Microcalorimeter	100 events (~ 4-day beam)	2 eV	0.09 eV
		3 eV	0.13 eV = 3 / 2.35 / sqrt(100)
		4 eV	0.17 eV

most fundamental quantity

Kaon mass is essential to determine the stronginteraction shift with 0.1-eV order of magnitude. $(\Delta m = 16 \text{ keV} \rightarrow EM \text{ value for K-He La} = 0.15 \text{ eV})$ $(\Delta m = 2.5 \text{ keV} \rightarrow EM \text{ value for K-He La} = 0.03 \text{ eV})$

Summary of Kaonic atom study

nucleus

strong-interaction study

Small n

the most tightly bound energy levels that are the most perturbed by the strong force

Large n

Kaon mass

the higher orbit having almost no influence on the strong interaction

Rough yield estimation

		Acceptance (including x-ray attenuation)	Number of stopped kaon	Absolute x-ray yield / stopped K	Time	X-ray counts
prev. experiment (KEK-PS E570 2nd cycle)		0.126% / 7SDDs	~300/spill (2sec)	~8%	272 hours	1700 w/o cuts (including trigger condition ~40%)
TES J-PARC (30kW)	Не	0.024%	~300?/spill (2sec) duty ~45%	~8%	~4 days	130
	C	~0.01% self attenuation	~2000?/spill (2sec) duty ~45%	~17%	~1 weeks	2500

-> reasonable beam time

Summary

Inext-generation K-atom exp. with NIST TES array having great performance of 2~3 eV (FWHM) resolution @ 6keV

open new door to investigate K-nucleus strong interaction

has potential to resolve a long-standing <u>"deep" or "shallow" problem</u> of the K-atom optical potential depth

provide new accurate charged kaon mass value (being also essential to determine the energy shift of K-⁴He atom)

future perspective

- 2013 : test experiment without beam (evaluation of basic performance)
- 2014 : test experiment with beam and preparation of Lol / proposal
- ► 2015 or later : the first experiment