Quenching Factor Measurements of CaWO₄ at mK Temperatures

Direct Dark Matter Search with CRESST

R. Strauss (TU München) on behalf of the CRESST collaboration

LTD-15, Caltech Pasadena, 28.06.2013

Outline

Cryogenic CRESST Detectors

- Final Results of Quenching Factor Measurements of CaWO₄ at mK Temperatures
- New Dark Matter Run of CRESST

CRESST in a Nutshell

Phonon-Light Technique

Reduced light output for highly ionizing particles Quenching

=

=

typ. 12-40 keV (O + Ca +W)

=

Acceptance region for WIMP scattering typ. 12-40 keV (O + Ca +W)

CRESST: Sensitivity to Different WIMP Masses

Status of QF Measurements

- In-situ determination of QF_o from neutron calibration
- Room-temperature measurements for O, Ca, W

Our Goal

Precision measurements of the QFs of CaWO₄

- ... in a running cryodetector
- ... at mK temperatures
- ... by neutron scattering

Neutron Scattering Facility – Experimental Setup

Neutron Scattering Facility – Central Detector

neutron detector array

Dedicated CRESST-like detector module in dilution refrigerator

- ~10g CaWO₄ target crystal as phonon detector
- Si absorber as light detector
- Suited for higher event rates (up to 100Hz)
- Low-mass holder (~20g)

PHONON channel \Rightarrow energy deposition in absorber

LIGHT channel \Rightarrow corresponding light output \Rightarrow QF

Identification of Recoiling Nucleus

Fixed kinematics due to

- mono-energetic neutrons (~11MeV)
- fixed scattering angle (e.g. 80°)

```
⇒ for CaWO<sub>4</sub>: 3 populations of events in phonon detector
```

E(¹⁶O) = 1100keV *E*(⁴⁰Ca) = 450keV *E*(^{nat}W) = 100keV

Identification of Recoiling Nucleus

Fixed kinematics due to

- mono-energetic neutrons (~11MeV)
- fixed scattering angle (e.g. 80°)

⇒ for CaWO₄: 3 populations of events in phonon detector

E(¹⁶O) = 1100keV E(⁴⁰Ca) = 450keV E(^{nat}W) = 100keV

Identification of Recoiling Nucleus

Conclusion and Outlook

- First precise measurement of QF_W by neutron scattering
 - at mK temperatures
 - bulk events
 - 10% precision
 - Realistic measurement condition \rightarrow low systematics
- QF_o and QF_{ca} can be disentangled at higher energies
 - improved light-channel resolution
 - precision QF measurements (≲5% error)
 - QF_o= 0.1212 ± 0.0035
 - QF_{Ca}= 0.0667 ± 0.0030
 - Energy-dependent QF analysis

 $QF_W = 0.0196 \pm 0.0022$

- Precise description of QFs of CaWO₄ to be published soon
- Influence on CRESST data under investigation

* QFs are preliminary values measured at E_r=100keV

New Experimental Run of CRESST – Run33

Excess signal in Run32 with high statistical significance (>4 σ)

Low-mass WIMPs ??

The second secon

Main Goal:

Clarification of the origin of the excess signal

by

- Background reduction
- Increase of the target mass

Mounting of Run33 – Completed!

12 standard CRESST modules

- highly improved background situation
- ultra-pure materials
- radon prevention
- 6 fully-scintillating CRESST modules
- highly efficient veto against surface backgrounds

Additional PE shielding against neutrons

The cryostat has reached mK temperatures ...

Perspectives for the Next Run (Run33)

In case of...

- Iow-mass WIMPs exist: Confirmation of Dark Matter scenario with high confidence
- background induced signals: Competitive limits over a wide WIMP-mass range

THANK YOU !!