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Background Photon Arrival Rate
(Outer Space)

Terahertz photon detector

Our signal



Desired properties

• Linear response
• Sensitive: Signal ≫ Noise

𝐸ph ∝ Signal

Noise

Why graphene?

Few electrons

– Very low heat capacity

– Single-photon sensitivity

Image from http://commons.wikimedia.org/wiki/File:Graphene_Crystall.PNG

𝛿𝐸intrinsic = kB𝑇𝑏
2𝐶



𝜏

𝑡

Δ𝑇

𝑇𝑏

Potential issues

• 𝑅 ≈ 𝑇-independent

→ Use Johnson noise emission (GHz): 𝑃𝐽 = 𝑘B𝐵𝑇𝑒

• Electrons may cool off too fast

– Electron out-diffusion (𝐺diffusion)

– Electron-phonon coupling (𝐺ep)

– Photon emission (𝐺photon)

𝛿𝑇readout =
𝑇amp + 𝑇𝑏

𝐵𝜏

𝑇𝑒

Δ𝑇 = 𝐸ph/C

(for linear device)



Potential issues

Low heat capacity—too low? 

– Want to minimize 𝐶 for 𝛿𝐸 , but may lead to Δ𝑇 ≫ 𝑇b
– Detector might be too fast (𝜏 = 𝐶/𝐺)

Reason for optimism:

– 𝐺ep is predicted to be very small

→ Manageable (long) response time

𝛿𝑇readout =
𝑇amp + 𝑇𝑏

𝐵𝜏



Graphene as a photon detector

𝑇b = 100 mK
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Graphene as a photon detector

𝐸ph/𝛿𝐸 = 5



Graphene as a photon detector

𝐸ph/𝛿𝐸 = 5



Graphene as a photon detector

𝐶 ≈ 1 × 10−19 J/K ⇒ 𝐸ph/𝛿𝐸 = 0.6

𝑇b = 100 mK



Graphene as a photon detector

𝐶 = 2 × 10−22 J/K     ⇒ far from equilibrium 

𝑇b = 100 mK C.B. McKitterick et al., J. Appl. Phys. 113 044512 (2013)



Graphene as a photon detector

𝐶 = 2 × 10−22 J/K     ⇒ far from equilibrium 

C.B. McKitterick et al., J. Appl. Phys. 113 044512 (2013)𝑇b = 100 mK



Graphene detector summary

• Sensitive to single THz photons

• 𝛿𝐸 too large for spectroscopy

• Depends on unresolved physical parameters 
(thermal conductivity)1,2

1A.C. Betz et al., Phys. Rev. Lett. 109, 
056805 (2012).

2K.C. Fong and K.C. Schwab, Phys. 
Rev. X 2 031006 (2012)



Noise measurements

DC Readout

DC Signal

Tb= 2 K

𝑃in = 𝐼𝑉

SiO2

NbN NbN

Doped Silicon

Graphene
Ti Ti

𝑉gate

Filter,
𝑓0 = 1.5 GHz



Measured results

0.22

0.20

0.18

0.16

N
o
is

e
 V

o
lt
a
g
e
 (

V
)

403020100

Bias Current (A)

1

2

3

4

5

6
7

10

2

3

4

E
le

c
tr

o
n
 T

e
m

p
e
ra

tu
re

 (
K

)

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

DC Power (W)

O
u

tp
u

t 
si

gn
al

 ∝
N

o
is

e 
Po

w
er

 (
V

)

• Output is DC voltage proportional to RF Power

• Measure coupling to convert to electron 
temperature 
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Noise measurements

𝐺 =
𝑑𝑃

𝑑𝑇e

Desire 𝐺~10−15 W/K @ 100 mK𝐺 = 𝐺diffusion + 𝐺ep + 𝐺photon



Noise measurements

Desire 𝐺~10−15 W/K @ 100 mK𝐺 = 𝐺diffusion + 𝐺ep + 𝐺photon



Noise measurements

ATp

A

Desire 𝐺~10−15 W/K @ 100 mK𝐺 = 𝐺diffusion + 𝐺ep + 𝐺photon

+1



Conclusions

• Graphene has promise as a photon 
counter, but low energy resolution

• Known unknowns:
– Initial energy equilibration after 

absorption
– Energy confinement

• High 𝑇 thermal conductance well-
described by 𝐺 ∝ 𝑇2 , electron-phonon?

• Preliminary evidence of electron 
confinement due to superconducting 
contacts

AT

ATp

A
+1



• Perform measurements at <1 K

• Perform similar measurements 
on different substrates

• Use interferometer/fiber optics to test 
graphene bolometers in mid to far-IR

Outlook


