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Overview

« Tutorial/introduction, not a review

« Summary of electrodynamics of superconductors: kinetic inductance

* Monitoring complex conductivity of large numbers of detectors with
resonator circuits

* Expected responsivity and noise

 Applications you will hear about later

* Won'’t cover nonlinear kinetic inductance

* Nonlinearity becomes important when magnetic energy comparable to pairing
sneter: Ly I? ~ 2Ny V A?

* Offers prospect of parametric amplification with minimal dissipation

* Discussed fully in talks and posters by Klapwijk, Gao, Kher, Day, de Visser,
Bockstiegel
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Quasiparticles to Conductivity

* Conductivity from microscopic BCS theory by Mattis and Bardeen

* Use perturbation theory to calculate response of BCS superconductor to EM field

* M&B assume extreme anomalous limit, but analysis can also be used for local limit
with appropriate modification (see, e.g., Gao thesis Ch 2).

* Yields complex conductivity:

o _ 2 [ [f(€) — fe+ hw)] (€ 4+ A? 4 hwe) resistive
on  hw Ve — A2\/(€ + hw)? — A2 Fle) = 1/[e/*sT 4 1]

P 1 [1—2f(e + hw)] (e + A% + hwe)
— = — le :
on  hw LA JAT =2 \/(6 + hw)? — A2 reactive

* Two-fluid model: imaginary (reactive) part scales with Cooper pair component,
real (resistive) part scales with quasiparticle density

* Quasiparticle/Cooper pair population change = conductivity change

* T.Klapwijk and others:“engineering” model insufficient due to non-
BCS density of states, effects of readout power

* For clarity here, stick with engineering model: changes in quasiparticle
number completely characterize effect of energy input
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Qua5|partlcles to Conductivity
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Qua5|partlcles to Conductivity

10°1 ]
O /A = 0.06 I« MB gives characteristic
107} . temperature and zw/A
g i ]
Z oL ; dependence
ig : : 108 T T T T T T T TT7 T T T T LI
= . T T/T =9
10" ¢ quasiparticle /=
- density | 8
106 _
1(?887 . . e a— ] \ 7
" | Recall 6(0) = jo,(TA/hv) - — < 6
= 10” } conductivity fully — _ s { :T" 0% _\7.\ -5
o . .
= - inductive = . 5
2 TaT=0_- quiescent fractional| < 4
s 1070 Z conductivity deviation 2 3
g L _ 0 | . . _
g o from T=0 value- 1 O)J\'W 5
= 107 ¢ roal part - fractional conductivity
i -(imaginary part) — — — — 1 dependence deviation from T=0 value
o® 1 7./T=15 bt H] —————+—++]{ 10
— = fractional , ratio of inductive to resistive] 5
S £ , . realpartt 2 response controlled via1 L | ®
B X 4Cresponsivity (imaginary part e 3 1 a3 la
= = E 4 ho /A and TJ/T] o |5
S F3-T T . E 2 ~ | 2
1% ¢ : Jo |2
S = . F E - 1 © |3
—_— 2? = B a)-] B (@) o
5S4 ¢ e: . 1 3|5
£ > = €: - dependence 1 2. 10
44 1 E | OCP 1 =13
Z 0 E o < | =
— B . Zmuidzinas, ARCMP (2012) <.
0 L ! 1 L 1 1 Lo f100 —
0.1 102 10" 100 =<
hw/A

Kinetic Inductance Detectors

T/T

Sunil Golwala



Conductivity to Observables

* Observables

* Surface impedance is Z; = E/ H for EM wave propagating normal to surface

* For thin films (thickness ¢, therefore local limit; y = —1):

Zs=Rs+iX,~ 1. Zs =i Xs(T'=0) = iwLs(T=0)
(0p —i09)t x —[U(T:O)]_lzi[@(T:O)]_l

o> dominates for T << T,, so X; dominates

* Relate fractional changes in ¢ to fractional changes in Z; (thin film limit)

0L do oLs oo OR,

50'1
7 — 0 = 0
ZT=0) o(T=0) L, o0oT=0)_ "  wL, oo(T=0)"

“kinetic impedance”

“kinetic inductance” “kinetic resistance”

Recall that the fractional conductivity change shows weak temperature
dependence.

* So, given a measurement of surface impedances in a thin film, we can infer changes
in conductivity and thus qp density.
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kinetic inductance

KID Readout and Multiplexing / fraction

1 R, - R,
Qigqp W (L + Ls(T =0)) wLy(T = 0)

fr=fA(T=0) 1 L,—Ly(T=0)

* KIDs response in both
reactance and resistance

* High Qg suggests KIDs can T=0) 2% L. T=0
be mcorpgratgd |nFo high-Q Q? 1 St
resonant circuits; yields 0521y, = 0 662‘ -2
C 1,4qp r
frequency and Q response
* High-Q circuits lend themselves ' Frequency | make these digita 5 o
E Synthesizers E ' IQ Mixers

to frequency-domain multiplexing

* Principle identical to AM/FM radio:
frequency — phase (FM),
Q — amplitude (AM)

* Don’t forget resonator bandwidth! ®7
&

Jap < Jr/ 20
* Ever-growing capabilities in
GHz digital electronics:

Cryostat

MMM~

* Fully digital generation, reception,
and demodulation now possible

Mazin (2004)
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Materials

o Aluminum

* Workhorse of superconductivity

* Seems to follow Mattis-Bardeen well

Difficult to get high kinetic inductance fraction in a range of geometries due to
short penetration depth (low resistivity)

* Titianium nitride and other nitrides, silicides, etc.

High resistivity! Yields very large penetration depth and Kl fractions almost unity
in films of tens of nm thickness

* T. controllable

But does not follow Mattis-Bardeen; obtaining physics-based understanding of
response is critical.
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Resonator Readout Architectures

* Half-wave through

* N 2-length of transmission line acts like a through short on-resonance

* disfavored architecture;
has no off-resonance transmission

Output
T [HE \
T T
L 1
—| T (030 T = responsivity « I2, peaks at
T T center, vanishes at ends
-+ -+

I Lwl Mazin et al., Proc. SPIE (2002)

Input
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Resonator Readout Architectures

* Quarter-wave shunt

* AN4-length of transmission line acts like a short to ground on-resonance

_ T T I D
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o IZ’ GL:'; @- e oo
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vanishes at S - I -

open end % P

(@)
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150/
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S21]

210\

> 0 ° - 0 5 240 :
f — fo [MHZz] f = fo [MHZ] Gao thesis 270
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Resonator Readout Architectures

* Lumped element

* Can be designed to eliminate dependence of responsivity on current distribution

* Energy can be usefully absorbed anywhere

* No insensitive volume for quasiparticles to diffuse to

* Decouples size of resonator from readout frequency

* Many implementations!
Capacitive coupling

Input CPW feedline

Interdigitated
capacitor

Meander
inductor

Submillimeter
waves

< S

3
>

cap

Noroozian thesis (2012)
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Inductive Coupling

McKenney et al,,
Proc. SPIE (2012)

-~ P Output

Monfardini et al., LTD-14 (201 1)
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Multiplexing and Readout

* Fulfilling the KID dream! But there are challenges: collisions, cross-

coupling, scatter. -39
-40
117: lumped element _ 41
sl Noroozian thesis (2012) % 40 |
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MUSIC: 288 resonators (2012)

' hybrid IDC + CPW inductor

MR-

Golwala et al., Proc. SPIE (2012) |

3 32
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Energy Coupling Architectures

* Direct absorption of X-ray, optical, submm, mm photons in KID

* Microlenses can be used to decouple KID size from diffraction spot size
(MAKO, ARCONYS); high resistivity material can match free space; also via feedhorn

* Antenna (and feedhorn) coupling

* SRON: lens coupling to twin-slot antenna at end of CPW KID
* MUSIC: phased array antennas coupling to hybrid IDC/inductor KID

* Phonon absorption

* Direct absorption
of phonons in
lumped element KIDs

* Phonon-mediated
detection of particles, y’s

Cornell, Moore et al.
Kinetic Inductance Detectors 14 Sunil Golwala



Quasiparticle Response to Energy Input

* Quasiparticle response
governed by quasiparticle
lifetime, observed to follow

TmCLZE
Tgp =
1+ ngp/n

where n. may be a
limiting qp density

* Frequently written as

1 1
Tgp Tmax %
. o £
with the recombination :
constant £

R = (2ns Taz)
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Quasiparticle Response to Energy Input

* queiscent point (74 and ngy) set using g-r equation to balance
gp generation by power (optical, readout, and stray) and qp decay:

P 1 N,
%:qu (—7_ ‘|‘R$> Ngp =ngp V' Ne=n,V

Tmazx l ' qp 7\7

In absence of known power, 7y — Tmax, Ngp — N, and P — N.Altmax

* Dynamic response: use dynamic g-r equation to obtain

ONgp(f) ~ 1 OP(f) 1+ Ngp/N.
Nyp 1+2mifr, P 14 Ng/2N,

* Bolometric mode: simple proportionality with “bolometer time constant” 7,

* Calorimetric mode: 0P(f) = oE: exponentially decaying pulse response with
pulse height ong = noE/A and decay time 7,

* Use relations between ong, and observables to obtain expected signal
« Don’t forget resonator bandwidth! f,, <f./20;
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photon noise

Noise

rate
generatlon-recomblnatlon noise

thermal gp
generation

amplifier noise
temperature

/

2 | 4
An,gpBo  ATGRE 2NgAZ o | | SNZ,AY kT
NEP% = 2Phv(1 + o) H——2— P, + — 204+ = 0 (! 15—
5 Up s ToXcXapTap La
/ SN2, A5 kT,| SN2, A;Q? /
NEszreq ] ZPOhv(l + nO) + NEPé—r—i_ 2,2 qu 2 P - T 2 qu 2 21 STLS Pa=(xc/2) Py
A—4 X Pmoxcxap®ar Yo B oXapTar
/ \ . absorbed
amp!lﬁer two-leve'l system readout power .
optical optical noise noise feedline
power optical photon readout power
photon occupation total
frequency number internal qp internal
i p on of differential efficiency for quality quality
n, efficiency for creation o Na = (Ao/74p)OT1OP, creation of qps factor factor
aps from optical power from readout power \
= 0,/ <1
= 002 ratio of imaginary (frequency) o 40.Q; < resonator-feedline Aap Q" Q?p -
~ §gq to real (dissipation) response Le = (O, + Q)Z — = coupling efficiency quasiparticle
Cc 14

quality factor
efficiency

* g noise for gps created by readout and thermally; g noise for optically
created gps already in photon noise term;r noise for all gps

* Amplifier noise reduced by factor f in frequency direction

* In submm/mm, approaching or achieving bgnd limit; see talks/posters
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Two-Level Systems in Resonators

* Amorphous oxides on resonator metal
film and bare substrate

* Amorphous materials have large
population of “two-level systems”

* Defect states in materials present
opportunity for tunneling
between two configurations

Frequency shift scales with temperature
and dimensions as expected from
phenomenological theory

* Theory of two-level systems in
NMR applies

 TLS interacts with resonator /\/\
via electric dipole moment

Prediction

Af/f, (x 1075)

. /\/\ s — 50 um j[(]t B
* Trades energy with resonator’s —
-1 —_— 5um O
RF EM field. /\/ : —
o . 12 1 (I)O 2(I)0 3(I)0 4(I)0 S(I)O 6(I)0 7(I)0 800
* But can also emit to substrate via phonons. T (mig
.. . .. ) Gao et al APL (2008) as reproduced in
* Loss (dissipation) — noise in the coupling. Zmuidzinas, ARCMP (2012)

* Coupling to dipole moments in substrate = dielectric constant
Fluctuations in TLSs = dielectric constant fluctuations
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Two-Level System Noise Characteristics

* Noise only in phase direction to
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get away from amorphous materials = ..
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Applications: So Many!

e submm/mm

* imaging: MAKO (McKenney, Swenson), BLAST-POL+ (Hubmayr), NIKA (Doyle,
Monfardini, Calvo(P)), lens-coupled twin-slot antenna (Yates), GroundBIRD
(Tajima, Watanabe(P)), MUSIC (Sayers, Gill(P), Siegel(P)), A-MKID (Baryshev(P),
Baselmans(P)), polarization-sensitive KIDs (Tartari(P))

* spectroscopy: DESHIMA (Endo), SuperSpec (Shirokoff, Barry(P), Hailey-Dunsheath
(P))

* membrane-isolated resonator (Wernis(P), Lindeman(P), Thomas(P))
* optical: ARCONS (Mazin, Marsden(P), Meeker(P))
« X-ray: membrane-isolated resonator (Ulbricht, Cecil(P), Miceli(P))
* Phonon-mediated detection (Cornell, Ishino(P))
* Materials development: Giachero(P),Vissers(P), Koga(P), Bueno(P)
* Noise: Lindeman(P), Lovitz(P)
* Current-biased KID:Yoshioka(P)
* Assorted talks/posters on readouts
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Conclusion

* Kinetic inductance detectors are an exciting application of the physics
of superconductivity yielding high readout multiplex factors

* The fundamental response and noises can be understood and tested
(at least for M-B material, and hopefully soon for high-resistivity non-
M-B materials).

* They are applicable in a wide variety of circumstances for energy
detection.

* Thanks to the many LTD participants who supplied input to this talk.
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