CMB Polarization Measurements with SPTpol

Nicholas Harrington UC Berkeley

Why Measure CMB Polarization?

- Additional test of current models of cosmology
- Constrain sum of neutrino masses
- Probe inflationary physics

A 10m dish yields1-arcmin resolution

Optics Cutaway

SPTpol Focal Plane

Contoured

feed horn;

maintains

95 GHz Detectors

- 190 individual pixels (380 bolometers) at 95 GHz
- Orthogonal crossed absorbers in each pixel separated by ~50 μ m by spacer wire bonds

95 GHz Detectors

95 GHz Detectors

R(T) curve: Steeper = Faster, more linear Broader = More stable Engineer TES speed and responsivity - Palladium-Gold (PdAu) added head capacity to slow detectors (ala SPT-SZ)

- Tested superconducting stripe and dot architecture on TES to "soften" R(T) curve and add responsivity high in the transition

SPTpol Focal Plane

90 GHz 50 GHz 90 and 150 GHz Focal Plane: •90 GHz detectors made at Argonne National Labs •150 GHz detectors made at NIST (Boulder) **NIST 150 GHz array** 588x pixels total in 7x arrays Monolithic silicon platelet corrugated horn array Crossed OMT antenna • Micro-strip to 0.50 K AI/Mn TES **Silicon Platelet** horn array **TES detector array OMT** Antenna 4 mm

150 GHz Detectors

AI/Mn TES (Tc ~ 0.5 K)

NIST 150 GHz detectors uses antenna-coupled TES design

- Niobium OMT antenna splits light into two polarizations, fed through strip-lines to TES island, where heat is dissipated through lossy Gold (Au) meander

Corrugated feed horns

- Excellent beam and RF pickup systematics control
- 84 pixel gold-plated, silicon horn array with optimal 1.5 f I spacing
- Stack of 33 silicon wafers (500 mm), deepetched in shape of horn profile, stacked, and gold-plated
- Thermal contraction naturally matched to Silicon detector array

Digital Frequency Multiplexing System

- Digital Active Nulling (DAN aka BBFB) run at bolometer bias frequencies
- Low frequency flux locked loop (<1kHz) is used to mitigate the changing flux caused by the telescope scanning through the Earth's magnetic field

Cold Electronics LC Board at 270mK

SQUID Board at 4K

Serial SQUID Arrays Fabricated at NIST

Not Shown: shields to reduce the low frequency background magnetic field.

Warm Electronics

- Attached to cryostat
- 1st and 2nd stage amplifiers
- DACs for setting SQUID operating points
- Handles signal generation
- Demodulation of bolo time streams
- Communicates with control computer

Detector polarization angle calibrated with polarization source

The source is an oven behind a rotating polarizing grid

First year's observations have yielded good data

- Observed ~100 deg² field in low-foreground region of southern sky
 - -50 < declination < -60</p>
 - 23h < RA < 24h

Full-season map noise

- ~8 µK-arcmin in temperature @ 150 GHz
- ~10 µK-arcmin in polarization @ 150 GHz

We have switched to observing the full 500 sq deg survey field and will until 2016

SPTpol Science Projections

For the full 4 year survey we will constrain:

• The sum of neutrino masses:

 $\sigma(\Sigma m_{\nu}) \approx 0.1 \mathrm{eV}$

• The tensor-to-scalar ratio:

 $\sigma(r) = 0.03$

- SPTpol will detect lensing at 45σ
- Will provide high signal-to-noise mass maps to calibrate other surveys

SPT-3G: The Next Generation Camera for the SPT

2001: ACBAR 16 detectors 2007: SPT 2500 deg² 960 detectors 2012: SPTpol 500 deg² ~1600 detectors 2016: SPT-3G 2500 deg² ~15,200 detectors When combined with Planck SPT3g will constrain: $\sigma(\Sigma m_{\nu}) \approx 0.06 eV$ $\sigma(r) \approx 0.01$

The CMB Polarization Can be Decomposed in to E-modes and B-modes

Image by Seljak and Zaldarriaga

Gravity Waves Create B Modes

Gravitational lensing mixes types of polarization

From Hu and White 1997