Application of Low Temperature detectors in physics : Past, Present, Future Ieri, Oggi, Domani

Origin and development of thermal detectors

- Micro and macro-calorimenters:
 - Single beta decay and the neutrino mass
 - The second mystery of Ettore Majorana
 - The search for direct interactions of WIMPS
- Expected and unexpected future of cryogenic detectors
- Dreams

S.H.Moseley et LT detectors for astrophysics and v mass Fiorini and Niinikoski Low temperature detectors for rare events A. Drukier, L. Stodolsky, => neutrino physics and astronomy

A 2.2 kg TeO₂

Energy resolution of ea crystal of TeO₂ 5x5x5 cm³ (~ 760 g)

Energy [KeV]

6

Thermometers

Thermal detectors with NTD Ge sensors Thermal sensors with doped semiconductors Superconducting Tunnel Junctions Superconducting Phase Transition sensors Superconducting Transition Edge Sensors Superconducting Kinetic Inductance Devices

Direct measurement of the neutrino mass

Beta spectrometers ${}^{3}H => {}^{3}He + e^{-} + \swarrow \nu_{e}$ KATRIN 2 eV => 0.2 eV

Thermal detectors for searches on neutrino mass in single $\,\beta$ decay A.Nucciotti

An alternative measurement of the antineutrino mass

 $^{187}\text{Re} = ^{187}\text{Os} + e^{-} + \mathbf{W}v_{e}$

Nucleus with the lowest beta transition energy (~ 2.5 keV)

Source **inside the detector** => all energy spent inside the detector is measured It corresponds to the **entire decay energy** apart the antineutrino one

If the beta decay occurs to an exited state also the decay of this state is measured

 $^{163}Os + e^{-} => ^{163}Dy + v_{e}$

Milan-NASA- GSFC => 228 crystals of \sim .5mg of AgReO₄ => . 27 decay/second with implanted Si:P thermistors (E.Ferri).

The Electron Capture Decay of ¹⁶³Ho to Measure the Electron Neutrino Mass with sub-eV Accuracy (and Beyond)

Massimiliano Galeazzi^a, Flavio Gatti^b, Maurizio Lusignoli^c, Angelo Nucciotti^d, Stefano Ragazzi^d, Maria Ribeiro Gomes^e

D.Schmidt, L.Gastaldo

The second mystery of Ettore Majorana

Teoria simmetrica dell'elettrone e del positrone

NOTA DI ETTORE MAJORANA

"Il Nuovo Cimento", vol. 14, 1937, pp. 171-184.

Sunto. — Si dimostra la possibilità di pervenire a una piena simmetrizzazione formale della teoria quantistica dell'elettrone e del positrone facendo uso di un nuovo processo di quantizzazione. Il significato delle equazioni di DIRAC ne risulta alquanto modificato e non vi è più luogo a parlare di stati di energia negativa; né a presumere per ogni altro tipo di particelle, particolarmente neutre, l'esistenza di "antiparticelle" corrispondenti ai "vuoti" di energia negativa.

Ettore Majorana ordinario di fisica teorica all' Università di Napoli, misteriosamente scomparso dagli ultimi di marzo. Di ann; 31, alto metri 1.70, snello, con capelli neri, occhi scuri, una lunga cicatrice sul dorso di una mano, Chi ne sapesse qualcosa è pregato di scrivere R. P. E. Maria-

necci, Viale Regina Margherita 66 Roma

Neutrinoless double beta decay and Majorana neutrinos

Double beta decay

Two neutrino and neutrinoless double beta decay

INTERNATIONAL UNDERGROUND LABORATORIES (Present and Planned)

Possible evidence in 0νββ in ⁷⁶Ge

(H.Klapdor et al)

$$T_{1/2}^{0\nu} = (2.23^{+0.44}_{-0.31}) \times 10^{25} \,\mathrm{y}$$

 $< m_{v} > \sim 0.34 eV$

Present results on neutrinoless DBD

Table I: present results on neutrinoless DBD

Nucleus	Experiment	%	Q _{ββ}	Enrich	Technique	$T_{0v}(y)$	<mv></mv>
48Ca	Elegant IV	0.19	4271		scintillator	>1.4x1022	20-28
76Ge	IGEX	7.8	2039	8 7	Ionization	>1.6x1025	.23 – .64
76Ge	Klapdor et al	7.8	2039	8 7	ionization	1.2x1025	.2981
82Se	NEMO 3	9.2	2995	9 7	tracking	>1.x1023	1.7-4.5
100Mo	NEMO 3	9.6	3034	95-99	tracking	>1x1024	.46-1.1
116Cd	Solotvina	7.5	3034	83	scintillator	>1.7x1023	1.2 - 2.7
128Te	Bernatovitz	34	2529		geochem	>7.7×1024	.82-1.9
130Te	Cuoricino	33.8	2529		bolometric	>2.8 x1024	.37
136Xe	DAMA	8.9	2476	<u>69</u>	scintillator	>1.2x1024	.64 -1.6
150Nd	Irvine	5.6	3367	91	tracking	>1.2x1021	14 - ?

EXO $T_{1/2}^{0v}$ (136Xe) > 1.6 × 10²⁵ yr correspond <m_v > 140–380me KAMLAND-ZEN > 3.4 × 10²⁵ yr (Fukushima) 120-250 GERDAI?

Future experiments on DBD (from Elliott)

Experiment	Isotope	Mass	Technique	Present Status	Location
AMoRE ^{89,90}	¹⁰⁰ Mo	50 kg	CaMoO ₄ scint. bolometer crystals	Development	Yangyang
CANDLES ⁹¹	CANDLES ⁹¹ ⁴⁸ Ca 0.35 kg CaF ₂ scint. crystals		Prototype	Kamioka	
CARVEL ⁹²	^{48}Ca	1 ton	CaF ₂ scint. crystals	Development	Solotvina
COBRA ⁹³	¹¹⁶ Cd	183 kg	enr Cd CZT semicond. det.	Prototype	Gran Sasso
CUORE-0 ⁶⁹	¹³⁰ Te	11 kg	TeO ₂ bolometers	Construction - 2012	Gran Sasso
CUORE ⁶⁹	¹³⁰ Te	203 kg	TeO ₂ bolometers	Construction - 2013	Gran Sasso
$DCBA^{94}$	¹⁵⁰ Ne	20 kg	^{enr} Nd foils and tracking	Development	Kamioka
EXO-200 ⁵⁷	¹³⁶ Xe	160 kg	Liq. ^{enr} Xe TPC/scint.	Operating - 2011	WIPP
EXO^{70}	¹³⁶ Xe	1-10 t	Liq. ^{enr} Xe TPC/scint.	Proposal	SURF
GERDA ⁷¹	76 Ge	$\approx 35 \text{ kg}$	^{enr} Ge semicond. det.	Operating - 2011	Gran Sasso
GSO^{95}	¹⁶⁰ Gd	2 ton	Gd ₂ SiO ₅ :Ce crys. scint. in liq. scint.	Development	
KamLAND-Zen ⁹⁶	¹³⁶ Xe	400 kg	enrXe disolved in liq. scint.	Operating - 2011	Kamioka
LUCIFER ^{97,98}	^{82}Se	18 kg	ZnSe scint. bolometer crystals	Development	Gran Sasso
Majorana ^{77,78,79}	76 Ge	26 kg	^{enr} Ge semicond. det.	Construction - 2013	SURF
MOON ⁹⁹	¹⁰⁰ Mo	1 t	enr Mofoils/scint.	Development	
SuperNEMO-Dem ⁸⁷	^{82}Se	7 kg	^{enr} Se foils/tracking	Construction - 2014	Fréjus
SuperNEMO ⁸⁷	^{82}Se	100 kg	^{enr} Se foils/tracking	Proposal - 2019	Fréjus
NEXT ^{82,83}	¹³⁶ Xe	100 kg	gas TPC	Development - 2014	Canfranc
SNO+ ^{84,85}	¹⁵⁰ Nd	55 kg	Nd loaded liq. scint.	Construction - 2013	SNOLab

NEW SNO+ dissolves **Te** in the scintillator

Searches of $\beta\beta$ decay with thermal detectors

¹³⁰ Te => ¹³⁰ Xe + 2 e a.i, $\sim 34\%$ $\Delta E = 2527$ keV

Mibeta (Milan) an array of 20 bolometers of TeO_2 of $320 \Rightarrow 6.8 \text{ kg}$ CUORICINO (CUORICINO Coll.) $\Rightarrow 40.7 \text{ kg}$ CUORE (CUORE coll)988 crystals of 750 g $\Rightarrow 741 \text{ kg}$

CUORICINO

CUORE0

CUORE L.Canonica,L .Taffarello

The future

Other possible candidates for $\beta\beta$ decay

Compound	Isotopic abundance	Transiton energy
⁴⁸ CaF ₂	.0187 %	4272keV
⁷⁶ Ge	7.44 "	2038.7 "
¹⁰⁰ MoPbO ₄	9.63 "	3034 "
¹¹⁶ CdWO ₄	7.49 "	2804 "
¹³⁰ TeO ₂	34 "	2528 "
¹⁵⁰ NdF ₃ ¹⁵⁰ NdGaO ₃	5.64 "	3368"

Searches for **direct interactions** of Weakly Interacting Massive particles (**WIMPS**)

Galactic WIMPs interact on a nucleus depositing tens to hundreds of keV of kinetic e nergy to a single nucleus.

Evidence of a seasonal variation by DAMA/LIBRA

Positive => CRESST,Cogent, CDMS II silicon?

Negative => CDMS II, Xenon100, Picasso, COUPP

Detectors

- => nuclear emulsions
- => bubbles
- => the human body
- => ionization and scintillation (two phases)
- => LTD's with and without ionization and/or scintillations

In conventional shield at LNGS 161 kg LXe (~50 kg fiducial), dualphase, 242 PMTs taking science data In water Cherenkov shield at Kamioka 835 kg LXe (100 kg fiducial), singlephase, 642 PMTs taking science data Above ground at DUSEL 350 kg LXe (100 kg fiducial), dualphase, 122 PMTs, to be placed underground in 2012

Operated at the Boulby mine, UK 12 kg (6 kg fiducial) dual-phase, 31 PMTs, high drift field ended in 2011

Phonons: CDMS, CRESST, EDELWEISS

- 30 Ge/Si detectors at 40 mK
- 2 events (191 kg-day)
- –1 expected from backgrounds
- operates new, iZIP SuperCDMS detectors at Soudan

- Ge detectors at 18 mK
- 5 events (427 kg-day)
- 3 expected from backgrounds
- operates new, 10 x 800 g crystals with improved background rejection

- CaWO₃ detectors at 10 mK
- 67 events observed (730 kg-day)
- 37 expected from backgrounds
- room for a signal?

focus on reducing backgrounds

ROSEBUD SrF₂

Spin independent

Spin dependent

Future Cryogenic Dark Matter Projects

- US/Canada: SuperCDMS (15 kg to 1.5 tons Ge experiment)
- Larger Ge detectors (650g) with improved readout
- To be located at SNOLab

- Multi-target approach; EDELWEISS + CRESST
- To be located at the ULISSE Lab (Modane extension) in France

First results on low-mass WIMP from the **CDEX-TEXONO** experiment at the China **Jin ping** underground Laboratory

WIMP dark matter from 14.6 kg-day of data taken with a 994 g p-type pointcontact germanium detector

Reduction of the background in $\beta\beta$ and DM experiments

- **DM** => enhance **nuclear recoil** reduce **electromagnetic** (e,g etc) contribution
- $\beta\beta => \text{ enhance detection of the electron pair} \\ \text{reduce degraded } \alpha \text{ particle}$

Hybrid techniquest (acting in a different way) Thermal detector are slow, but ionization, scintillationa and light are fast
Pulse shape discrimination (even for thermal detectors if associated with a large energy loss by scintillation
Cherenkov light (for TeO₂ detectors for instance
Surface activity reduction for ββ experiments by

=>Surface-sensitive composite bolometers (eg. thin TeO₂, Ge slabs or NbSi) ⇒Reflecting film and light detector ⇒Cerenkov light at 2.5 Mev 125 photons => 350 eV (in TeO₂) ⇒ Heat + Scintillation or ionization L. Cardani,Geon-Bo Kim

Hybrid techniques heat + ionization or heat + scintillation

The first scintillating calorimenter (CaF₂)

CUORE - LUCIFER

CdWO4

ZnSe

I miss nuclear physics!

But many relevant results in X and α spectroscopy D.Benford,D.Schmidt,m.Ploosari,S.Hakateyama,W.Hoon,P.Egelhof,M.Croce.

D.Benford,D.Schmidt,M.Ploosari, S.Hakateyama,W.Hoon P.Egelhof,M.Croce.

Nuclear tables are sometimes wrong!

²⁰⁹Bi considered the stable with the higher atomic number => it is not ! Heat+light in Paris and Milan => $\tau \sim 2 \ 10^{19}$ years

Archaeometry Roman Lead

Procured enough for CUORE

Lead is an excellent shielding material , but... ²¹⁰Pb (22.3 y) \Rightarrow ²¹⁰Bi \Rightarrow ²¹⁰Po \Rightarrow ²⁰⁶Pb

Measured thermally => less than 4 mBBq/kg

Isotopic lead geochronology

²³U => ²⁰⁶Pb
²³⁵U=> ²⁰⁷Pb
²³²Th° => ²⁰⁸Pb
²⁰⁴Pb (reference)

Coherent elastic neutrino-nucleus scattering

Same technique as for Dark Matter

Not yet found , but cross section enhanced by coherence

- => high intensity π and μ decay-at-rest (DAR) (maximum neutrino energy ≈52 MeV)
- \Rightarrow Maybe also from **SNS** and **Supernovae**
- ⇒ Maybe even with reactors

Texono (with the Taiwan reactor and the Texono-CDEX collaboration in Jinping Underground Laboratory

=>Array of small Ge ionisation detectors (better calorimeters!)

Detection of relic neutrinos

 $\mathbb{W}v_{e} + {}^{3}\mathrm{H} = {}^{3}\mathrm{H}e + e^{-}$ $\mathbb{W}v_{e} + {}^{187}\mathrm{R}e = {}^{187}\mathrm{Os} + e^{-}$

Isotope	Decay	Q (keV)	Half-life (sec)	$\frac{\sigma_{\rm NCB}(v_{\nu}/c)}{(10^{-41}~{\rm cm}^2)}$
 ³ H ⁶³ Ni ⁹³ Zr ¹⁰⁶ Du	$egin{array}{c} eta^- \ eba^- \ ea$	18.591 66.945 60.63	3.8878×10^{8} 3.1588×10^{9} 4.952×10^{13} 2.2278×10^{7}	7.84×10^{-4} 1.38×10^{-6} 2.39×10^{-10} 5.88×10^{-4}
 ¹⁰⁷ Pd ¹⁸⁷ Re	$egin{array}{c} eta \ eta^- \ eta^- \ eta^- \end{array}$	$39.4 \\ 33 \\ 2.64$	3.2278×10^{12} 2.0512×10^{14} 1.3727×10^{18}	5.88×10^{-10} 2.58×10^{-10} 4.32×10^{-11}
^{11}C ^{13}N ^{15}O	$egin{array}{c} eta^+ \ eta^+ \ eta^+ \ eta^+ \end{array}$	$960.2 \\ 1198.5 \\ 1732$	1.226×10^{3} 5.99×10^{2} 1.224×10^{2}	4.66×10^{-3} 5.3×10^{-3} 9.75×10^{-3}
¹⁸ F ²² Na ⁴⁵ Ti	$egin{array}{c} eta^+ \ eta^+ \ eta^+ \ eta^+ \end{array}$	$633.5 \\ 545.6 \\ 1040.4$	6.809×10^{3} 9.07×10^{7} 1.307×10^{4}	2.63×10^{-3} 3.04×10^{-7} 3.87×10^{-4}

NEVER SAY NEVER (James Bond)