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detection principle 

massive particle absorber 
 

paramagnetic or superconducting 
temperature sensor 

 
operation at low temperatures 
 
 
 

 
no power dissipation in the sensor 
 

no galvanic contact to the readout 
circuit 

• small heat capacity 
• low thermal noise 
• large temperature change 

energetic particle 
x-ray photon 

magnetometer 



SQUID based sensor readout 

T = 10 mK   T = 10mK ... 4 K   room temperature 

Detector Amplifier 

two-stage SQUID setup • low noise 

• large bandwidth 

• low power dissipation 



detector geometries 

present working horses 



temperature sensors 
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signal shape 

fast rise time 
 

< 100ns @ 30mK for MMCs 
<     1µs @ 30mK for MPTs 

decay time 
 

roughly single exponential 
adjustable by metallic link 

90ns 
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signal size of MMCs 
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signal size of MMCs can be predicted with confidence 



signal size of MPTs 

T.R. Stevenson et al. 
 IEEE Trans. Appl. Supercond. 23 2300605, 2013. 

• magnetic flux change 
 

• specific heat 
 

• magnetic work 

calculation of signal size of MPTs challenging but feasible 

BCS 

Pippard 

GL models 

MoAu film placed on 
meander-shaped 

pickup coil 



hysteresis effects in MPTs 

non-hysteretic behaviour 
for patterned sensors 

large area sensors show 
hysteretic behaviour 
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noise contributions 

thermodynamical fluctuations of energy 

sensor ‚intrinsic‘ noise 

magnetic Johnson noise 
• thermal currents in metallic detector components 
• can be kept marginal small 

amplifier (SQUID) noise 

• excess noise observed for Au:Er temperature sensors  
• …. 

Csens Cabs 
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detector optimization 

signal 
• pickup coil geometry 
• coupling scheme 
• detector responsitivity 

noise 
• energy fluctuations 
• amplifier noise 
• magnetic Johnson noise 
• intrinsic sensor noise 
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0.3 1.1 0.6 High resolution 
x-ray spectroscopy  

1 2.2 1.2 

500 50 25 α-, β- and γ- spectroscopy 
up to MeV energies  



high resolution x-ray spectroscopy 

1x8 arrays 
1x16 arrays 

GSFC 5x5 array, larger arrays in development 

1d and 2d arrays  
for x-ray spectroscopy 
with photon energies 

up to 200keV  

HD 

GSFC 
MPT 

∆EFWHM = 2.3eV @ 6keV  

MMC 



high resolution x-ray spectroscopy 

70 µm 

55Mn 

non-linearity: 1% @ 6 keV 

single pixel device 
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‚physics‘ with MMCs / MPTs 

pulse tube cooled ADR 
maXs-20 x-ray lens 

electron beam ion trap (MPI-K,HD)  



‚physics‘ with MMCs / MPTs 
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electron beam energy [eV] 

photon energy [eV] 

x-ray spectroscopy of HCI @ EBIT 
(MPIK-HD, Heidelberg) 



detectors with position resolution 

hydra (GSFC) 

time [s] 



detectors with position resolution 

‚Pizza‘ (Heidelberg) 

10mm 



• neutrino mass measurements 
investigation of the neutrino mass is one of the big challenges in particle 
physics 

• 0νββ−decay (AMoRE, LUMINEU) 
• EC of 163Ho (ECHo) 
• β-endpoint of 187Re (MARE) 

 
• radiation metrology 

absolute activity and Q value measurements 
 

• spectroscopy of heavy ions and molecular fragments 
 

 
 

 

further applications 

… and many, many more… 



time domain multiplexing 

successful TDM demonstration 
GSFC detector, PTB Multiplexer, NIST DFB electronics 

∆EFWHM = 4.1eV @ 6keV 



microwave SQUID multiplexing 

single HEMT and two coaxes for readout of ~1000 detectors 



input coil current 

microwave SQUID multiplexing 

2 years ago @ LTD14 … 

vo
lta

ge
 

… and now @ LTD 15 

∆EFWHM < 5eV expected  



conclusions 

living, fruitful and collaborating MMC / MPT community 
Brown, USA 
CEA, Saclay, France 
Heidelberg, Germany 

KRISS, South Korea 
Leiceister, UK 
NASA/GSFC, USA 

NIST, USA 
PTB-Berlin, Germany 
UNM, USA 

MMCs and MPTs 
• flexible detectors 
• fast rise times, excellent energy resolution, linearity 

large spectral bandwidth 
• device fabrication ‚mature‘ 

 

detector arrays and multiplexing 
• small size arrays are ‚standard‘ 
• array readout is rapidly progressing 
• detector arrays with ~100 pixel in near future  
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Thank you for your attention ! 
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