Contributed Talk ## Superconducting Bolometer Design Adaptations for Very Different Applications Dominic Benford (NASA/COR Program Office) Co-Authors: D.J. Benford¹, C.A. Jhabvala¹, T.M. Miller¹, S.H. Moseley¹, E.H. Sharp^{1,2}, J.G. Staguhn^{1,3}, E.J. Wollack¹ ¹ NASA/GSFC ² GS&T ³ **|HU** We have designed and tested bolometer thermal isolation structures and superconducting transition edge sensors envisioned as spanning a broad range of long wavelength astronomical applications. At the high background limit, for instruments such as BETTII and HAWC+, saturation powers of several hundred picoWatts are required, permitting higher noise (of over 10^{-16} ,W/ $\sqrt{\text{Hz}}$). At the low background limit, for instruments such as PIPER, a saturation power of only $1\sim$ pW is sufficient, and low noise (of 5×10^{-18} , W/ $\sqrt{\text{Hz}}$) is required. We have measured the thermal performance of silicon leg-isolated membranes that can span this entire range with the modification of few design parameters. We have also come up with a quasistable G(T) measurement approach that does not require thermal parameters to be derived from dynamic IV curves. We present our progress on kilopixel-scale arrays for four projects that rely on these techniques.