# Exploring the Local Universe with TMT

# Masashi Chiba (Tohoku University, Japan)

TMT science study in Japan 2010-11 Science WG on Stars and the Local Group W. Aoki (PI) and seven members (samurais)

- 1. Exploring stellar activities and explosions
- 2. Clarifying galaxy formation with resolved stars
- Supernovae & GRB
- Stellar seismology
- First stars & metal-poor Galactic stars
- The Milky Way and dSphs
- The Local Group and beyond



Science report 2011

TMT science study in Japan 2010-11 Science WG on Stars and the Local Group W. Aoki (PI) and seven members (samurais)

- 1. Exploring stellar activities and explosions
- 2. Clarifying galaxy formation with resolved stars
- Supernovae & GRB
- Stellar seismology
- First stars & metal-poor Galactic stars
- The Milky Way and dSphs
- The Local Group and beyond



#### Science report 2011

### First stars & metal-poor Galactic stars

- Li abundance & Big Bang nucleosynthesis
  - Why the discrepancy? Depletion?
  - <sup>6</sup>Li measurement for metal-poor stars with [Fe/H]<-3
- Extremely metal-poor stars with [Fe/H]<-3.5</li>
  - Originated from dSphs? Abundance pattern?
  - High res spectra for many EMPs in the MW & dSphs with V>18

#### Li abundance & Big Bang NS A(Li) Garcia Perez+ 2009 (HDS) <sup>6</sup>Li measurement CMB + BBNS 7Li Difficult to derive it! Normalised flux Why the discrepancy? 0.96 S/N~600 1711 «Li//Li 0.00 0.92 BD-04° 3208 A(LI) ٩Li 0.8 3% 0,6 residual [%] 0.4 0.2 0.0 -0.2-0.4-0.6 670.76 670.78 670.80 670.82 If <sup>6</sup>Li is identified, Wavelength [nm] **☆**₩ ☆ <sup>7</sup>Li is not depleted; Needs high S/N (~1,000) <sup>6</sup>Li is more fragile R~100,000 spectra for metal-poor turn-off stars -3.0-2.5 -2.0 -1.5-1.0-0.5 0.0 -3.5(with V<13) w TMT [Fe/H] [Fe/H]

# The Milky Way and dSphs

- Globular clusters
  - Nature of multiple stellar populations
- The MW old components
  - Bulge : Nature of metal-rich young population in MS
  - Thick disk and halo : Abundance patterns of in situ field and stream stars (beyond the solar neighborhood)
- dSphs

# Multiple populations in GCs

Omega Cen

Piotto+ 2005



Fig. 7.—Comparison of the ACS CMD of  $\omega$  Cen (calibrated following Bedin et al. 2005) with isochrones calculated for the metallicity determined in Fig. 1. The bMS can be reproduced only assuming Y > 0.35. The blue and red filled dots show the bMS and rMS stars from which we collected our spectra.

# Multiple populations in GCs



Detailed abundance pattern?
⇒ needs high res spectroscopy of MS stars w TMT

son of the ACS CMD of  $\omega$  Cen (calibrated following Bedin thrones calculated for the metallicity determined in Fig. 1. roduced only assuming Y > 0.35. The blue and red filled and rMS stars from which we collected our spectra.

# Chemical abundance in the inner/outer halo

Subaru HDS results (Ishigaki, Chiba, Aoki 2012, 2013)

Assignment based on kinematics Thick disk: high  $\alpha$ Halos: mixed in  $\alpha$  abundance if selected by kinematics





Candidate outer halo stars having highly eccentric orbits show similar abundance patterns to inner halo stars



Tuesday, July 23, 13



#### Ultra Faint DSphs (UFDs) (Suprim Cam data by Okamoto+08)



#### Ultra Faint DSphs (UFDs) (Suprim Cam data by Okamoto+08)



#### Ultra Faint DSphs (UFDs) (Suprim Cam data by Okamoto+08)



# Dark matter halo in dSphs



### The Local Group and beyond

- Andromeda
  - Abundance patterns of field halo stars, stars in dSphs and globular clusters
- dlrrs in the Local Group
  - Phoenix, NGC 6822, IC 10
- Galaxies in nearby groups and beyond
  - Disk galaxies in Sculptor group, Maffei group, M81 group
  - Elliptical galaxies NGC5128 (Cen A), Maffei 1 and more in

#### Stellar halos in galaxies Halo formation model (Bullock & Johnston 2005)

#### Halo realizations





Stellar halos as tracers of galaxy formation: Having different structures depending on galaxy morphology?

#### NGC 55 @ D=2.1Mpc (Sculptor group) (Subaru/SuprimeCam: Tanaka+2011)



Tuesday, July 23, 13

#### NGC 55 @ D=2.1Mpc (Sculptor group) (Subaru/SuprimeCam: Tanaka+2011)



Tuesday, July 23, 13

#### NGC 55 @ D=2.1Mpc (Sculptor group) (Subaru/SuprimeCam: Tanaka+2011)



Tuesday, July 23, 13

#### M81 @ D=3.6Mpc (Subaru/SuprimeCam: Barker+ 2009)



# Nearby elliptical galaxies NGC5128 (Cen A)

#### DEC=-43 D=3.6Mpc



Peng+ 2002 (Blanco T.)



Deep imaging + medium res spectra with TMT ⇒ stellar age and abundance

## Nearby elliptical galaxies Maffei 1

Buta+ 2003 (HST)



b=-0.5 D=3.0Mpc

### Subaru for TMT

- Hyper Suprime Cam (HSC) provides
  - The MW's (faint) halo map + new UFDs and stellar streams
  - More basic data of Andromeda's halo
- Prime Focus Spectrograph (PFS) provides
  - Candidate extremely metal-poor stars
  - More member stars in dSphs and Andromeda

# HSC Prime focus (Hyper Suprime Cam)





FOV: 1.77 sq deg (1.5 deg diameter) Pixel scale: 0".17/pix Filters: grizy + several NB Operation: 2013~

International collaboration: Japan, Princeton, Taiwan



### Wide-field FoV is essential for mapping stars



# PFS Prime foo (Prime Focus Spectrograph)





FOV: 1.3 deg in diameter 2400 fiber positioners λ: 380~1,300 nm (3 channels: Blue, Red, IR) R: ~3,000 (LR) 5,000 (MR) First light: 2016~17

International collaboration: IPMU, NAOJ/Subaru, Caltech/JPL, Princeton, JHU, LAM, UK, Brazil, Taiwan +

# Scupltor, Fornax, Sextans





### Exploring the local universe with TMT: Summary

- Stars in the MW's old components (D < 50 kpc)
  - High res spectra for MS, MSTO and RGB stars in the bulge, thick disk and inner halo
- Remote Galactic halo stars and dSphs (D < 500 kpc)</li>
  - High res spectra for RGBs in the outer halo
  - Medium res spectra for Galactic HBs and for dSphs' RGBs
- Andromeda and other Local Group members (D < 1Mpc)</li>
  - High res spectra for brightest RGBs
- Other group galaxies (3Mpc < D)</li>
  - Medium res spectra for RGBs

#### Chemo-dynamical information of nearby galaxies ⇒ galaxy formation

# END

# Chemical abundance of dSphs

Mean metallicity vs. luminosity

Abundance ratios in dSphs



⇒ Needs high res spectra for many member stars in dSphs
+ abundance studies in new distant UFDs

# dSphs in Andromeda Keck/DEIMOS sample

Chemical abundance pattern? → needs high res abundance of bright RGBs



