

Adaptive Optics for the Thirty Meter Telescope

Brent Ellerbroek

TMT Forum Waikoloa, Hawaii July 23, 2013

TMT.AOS.PRE.13.081.DRF01 AO4ELT3, Florence, Italy, 05/27/2013

Thursday, July 25, 13

1

Presentation Outline

- Importance of AO for ELTs
- First light AO requirements review
- Derived AO architecture and technology choices
- Subsystem status report
 - NFIRAOS; LGSF
- Component development
 - Deformable mirrors; wavefront sensing detectors; guidestar lasers; real time controller
 - Modeling and performance estimates
 - Acknowledgements

The Importance of Adaptive Optics for ELTs

Seeing-limited observations and observations of resolved sources

Sensitivity $\propto \eta D^2$ (~14 × 8m)

Background-limited AO observations of unresolved sources

Sensitivity $\propto \eta S^2 D^4 \quad (\sim 200 \times 8m)$

High-contrast AO observations of unresolved sources

Sensitivity
$$\propto \eta_{1-S}^{S}$$

Sensitivity=1/time required to reach a given s/n ratio η = throughput, S= Strehl ratio. D = aperture diameter

The Importance of Adaptive Optics for ELTs

Seeing-limited observations and observations of resolved sources

Sensitivity $\propto \eta D^2$ (~14 × 8m)

Background-limited AO observations of unresolved sources

Sensitivity $\propto \eta S^2 D^4 (\sim 200 \times 8m)$

High-contrast AO observations of unresolved sources

Sensitivity
$$\propto \eta_{1-S}^{S}$$

Sensitivity=1/time required to reach a given s/n ratio η = throughput, S= Strehl ratio. D= aperture diameter

TMT.AOS.PRE.13.081.DRF01 AO4ELT3, Florence, Italy, 05/27/2013

3

TMT A "Rebirth" of Astrometry with ELTs

➡ 30 micro-arcsecs in densely populated fields:

- General Relativity at the Galactic Center
- Distance to the Galactic Center

 Star forming regions: accurate determination of the Initial Mass Function with cluster membership

2 milli-arcsecs in very sparse fields, i.e., where only wavefront sensor guide stars are available:

Magnetar proper motions to establish velocity imparted during progenitor explosion

 Binary star/planet orbits to measure stellar, compact object and planet masses

- Astrometric microlensing to measure accurate stellar masses

- Gravitational lensing to probe dark matter substructures
- Binary Kuiper Belt Objects

3 science ports at f/15 with 2 arc min unvignetted field
High throughput (80% in J, H, K, and I bands)
Low thermal emission (15% of sky + telescope)
Diffraction-limited IR image quality on a moderate FoV

[187, 191, 208] nm wavefront error over a [0,17,30] arc sec field

High sky coverage (50% at galactic pole)
High photometric accuracy

2% over 30 arc sec at λ=1 µm for a 10 minute observation

High astrometric accuracy

- 50 μas over 30 arc sec in H band for a 100 second observation

High observing efficiency

Galactic Center with the **IRIS Imager**

K-band t = 20s

100,000 stars down to K = 24

How First Light Performance Requirements Drive AO Architecture Decisions

High throughput	Minimize surface count
Low thermal emission	-30C operating temperature
Diffraction limited performance in	Order 60x60 wavefront sensing and
30" corrected science field	Atmospheric tomography + MCAO
High Sky coverage	Laser guide star (LGS) wavefront sensing
	NGS tip/tilt/focus sensing in the near IR
	MCAO to "sharpen" NGS images
High precision astrometry and photometry on 30" fields	Distortion-free optical design form
	MCAO for uniform, stable PSF
	AO telemetry for PSF reconstruction
Available at TMT first light with low	Utilize existing and near term components
TMT.AO AO4ELT3, F	S.PRE.13.081.DRF01 lorence, Italy, 05/27/2013 8

How First Light Performance Requirements **Drive AO Architecture Decisions**

High throughput	Minimize surface count	
Low thermal emission	-30C operating temperature	
Diffraction limited performance in	Order 60x60 wavefront sensing and	
30"corrected science field	Atmospheric tomography + MCAO	
High Sky coverage	Laser guide star (LGS) wavefront sensin	ng
	NGS tip/tilt/focus sensing in the near IR	
	MCAO to "sharpen" NGS images	
High precision astrometry and photometry on 30" fields	Distortion-free optical design form	
	MCAO for uniform, stable PSF	
High-order LGS MCAO with		
Avail NGS tip/tilt/focus sensing in the Near IR		its
TMT.AOS.PRE.13.081.DRF01 AO4ELT3, Florence, Italy, 05/27/2013		

LGS MCAO Now Producing Science at Gemini South

Order 16x16 correction on an 8meter telescope 2 DMs, 5 LGS 1 arc minute field Median Strehl ratio of 0.13 obtained in H band

> vs. 0.40 predicted via modeling for 3 DMs

First Light AO System Architecture and Technology Choices

- Laser Guide Star Facility (LGSF)
 - Nd:YAG or Raman fiber laser technology
 - Lasers mounted on telescope elevation journal
 - Conventional beam transport (mirrors)
 - Center-launch laser projection

First Light AO System Architecture and Technology Choices

Narrow Field IR AO System (NFIRAOS)

- Piezostack deformable mirrors and tip/tilt stage
- "Polar coordinate"
 CCD array for the LGS WFS
- HgCdTe CMOS arrays for low order, infra-red NGS WFSs (in client instruments)

Thursday, July 25, 13

TMT Recent AO Development Progress at TMT

AO Systems

- NFIRAOS pre-construction Final Design effort progressing
- LGSF Cost Review passed; Preliminary Design Phase beginning this Fall
- Work on AO Executive Software System initiated

AO Components

- DM recovery plan (CILAS) and feasibility study (AOA/Xinetics) progressing
- Prototype LGS and NGS WFS CCDs tested and meet requirements
- Real Time Controller Architecture Study passed interim review; low-cost commercial solutions such as GPUs+10GigE meet requirements
- TIPC, UBC, and TMT working toward on-sky laser tests later this Summer
- Modeling and Performance Analysis
 - NFIRAOS sky coverage estimates
 - Work on high precision astrometry and high contrast imaging with IRIS
 - First successful PSF reconstruction results obtained with GeMS lab data

NFIRAOS: First-Light LGS MCAO System

AO4ELT3, Florence, Italy, 05/27/2013

NRC-Herzberg Victoria, Canada

TMT AO Component Requirement Summary

THIRTY METER TELESCOPE

Deformable	63x63 and 76x76 actuators at 5 mm spacing
mirrors	10 μ m stroke and 5-10 % hysteresis at -30C
Tip/tilt stage	500 mrad stroke with 0.05 mrad noise
	80 Hz bandwidth
NGS WFS	240x240 pixels, 4x4 pixels per subaperture
detector	~0.8 quantum efficiency,~1 electron at 10-800 Hz
LGS WFS	60x60 subapertures with 6x6 to 6x15 pixels each
detectors	~0.9 quantum efficiency, 3 electrons at 800 Hz
Low-order IR NGS WFS detectors	1024x1024 pixels (subarray readout on ~8x8 windows)
	~0.6 quantum efficiency, 3 electrons at 10-200 Hz
Sodium guidestar	25W (20W with backpumping), $M^2 < 1.17$
lasers	Coupling efficiency of 130 photons-m ² /s/W/atom
Real time controller	Solve 35k x 7k reconstruction problem at 800 Hz

"Polar Coordinate" CCD for Wavefront Sensing with Elongated Laser Guidestars

Successful 1-Quadrant Polar Coordinate CCD Prototype

Joint Keck/Starfire/TMT wafer run of 4 MIT/LL CCD designs

- Front-side test results:
 - Reasonable yield (~50%) of fully functional devices
 - Uniformly good charge transfer (>0.99999)
 - 3 to 3.5e- read noise
- Back-side illuminated test results:
 - Peak QE of 0.9
 - Dark current acceptable for wavefront sensing at 800 Hz

TMT.AOS.PRE.13.081.DRF01 AO4ELT3, Florence, Italy, 05/27/2013

Frontside Device

- TMT continues to follow two laser development efforts:
- Toptica/MPB frequency-doubled Raman fiber laser meets all TMT requirements for output power, line width, beam quality, volume, and power dissipation
 - some TMT interfaces will require development
- Work on TIPC prototype SFG Nd:YAG laser is continuing:
 - Currently ~18W@800Hz power for 100µs pulse
 - − M² ~ 1.5
 - Line width of 0.6 GHz, with 0.2 GHz wavelength stability
- On-sky tests of the TIPC prototype (with repumping) planned for next month at the UBC Lidar Facility

TIPC Nd:YAG SFG Guidestar Laser System

Laser System and Optical Schematic

Lijiang Observatory, February 2013

Real Time Controller (RTC) Architectures

- RTC architecture study now underway at NRC Herzberg and TMT to update conceptual designs from 2008-09
- Benchmarking and design of a GPU-based architecture is currently most advanced
 - 2 GPUs per WFS implement gradient computation and matrixvector-multiply (MVM) wavefront reconstruction
 - Matrix updated at 0.1 Hz

Benchmark results: 0.95ms mean latency, 1.04 ms peak

Timing includes gradient computation, MVM computation, dat transfer over 10 Gig ethernet

Median AO Performance vs. Galactic Latitude and Longitude (at Transit)

Median seeing for TMT site

High Precision Astrometry for Observations of the Galactic Center

- Many sources of error have been investigated in detailed simulations:
 - Photon, detector, thermal noise
 - Differential tip/tilt jitter
 - Distortions:
 - Probe arm positioning error
 - Geometric (static)
 - PSF estimation
 - Confusion
- Single-epoch error budget:
 - Bright stars (K < 15): distortion dominates (~8 µas)
 - Faint stars (K > 15): confusion dominates (> 8 µas)

Estimated Image Contrast Ratios for NFIRAOS+IRIS

Limited by TMT diffraction at small separations (<0.6")
NFIRAOS/IRIS: equal contribution to contrast (but now limited by IRIS, with improved NFIRAOS

windows)

(old windows)

NFIRAOS+IRIS High Contrast Science Case vs. GPI

X: Simulated GPI detection (D. Savransky)

Acknowledgements

The TMT Project gratefully acknowledges the support of the TMT partner institutions.
 They are

- the Association of Canadian Universities for Research in Astronomy (ACURA),
- the California Institute of Technology
- the University of California
- the National Astronomical Observatory of Japan
- the National Astronomical Observatories and their consortium partners
- And the Department of Science and Technology of India and their supported institutes.
- This work was supported as well by
 - the Gordon and Betty Moore Foundation
 - the Canada Foundation for Innovation
 - the Ontario Ministry of Research and Innovation
 - the National Research Council of Canada
 - the Natural Sciences and Engineering Research Council of Canada
 - the British Columbia Knowledge Development Fund
 - the Association of Universities for Research in Astronomy (AURA)
 - and the U.S. National Science Foundation.