Star & Planet Formation: High angular resolution study of protoplanetary disks

> Misato Fukagawa (Osaka University)

Science with TMT star/planet formation

- Launching mechanism of the young stellar outflows/jets.
 - Evolutional dependence of the characteristics of the outflows/jets
 - Difference of the outflows from massive stars to sub-stellar objects
- Massive star formation
- IMF in various star forming regions
 - Environmental effects
 - The bottom of IMF (free-floating planets)

Spectra of brown dwarfs in NGC1333 (Scholz et al. 2012) Credit: NAOJ

Science with TMT

- Young circumstellar (protoplanetary and debris) disks
 - Detailed structure
 - Mechanism of gas dispersal (H₂ gas)
 - Spatial distribution of various kinds of dust, icy grains, organic molecules
 - Magnetic field
 - Forming planets embedded in disks

Subaru MIR spectroscopy for β Pictoris (Okamoto et al. 2004)

High angular resolution study of protoplanetary disks: Results from Subaru & ALMA

Protoplanetary disks

Natural outcome of star formation • Stellar age : 1~10 Myr • Optically thick • Gas-rich • Gas-to-dust = 100:1 in the interstellar • Formation of gas giant planets • R ~ 100 AU •~1 arcsec in the nearest star-forming regions

Disks at ~1 million years of age

- 1. Planet formation will occur, or is ongoing
 - Initial condition
- 2. Planet formation has recently finished
 - Interaction between planets and disks, evolution of planetary orbits, triggered formation of more planets?
 - Forming planets in disks

Transformation of interstellar dust & gas
Transport of material

Planet footprint?

Disks with holes or radial gaps

- Cavity size > 20 AU
- Carved by multiple planets, or by other mechanisms?

submm

Observations in opt/IR

• Observing dust

- Thermal IR emission from the hot, inner region
- Scattered light from the outer disk

• Scat. light

Sensitive to (sub)micron-sized grains in the upper surface of an optically thick disk

↔ millimeter-sized grains near the disk mid-plane efficiently detected in mm thermal observations

To observe...

1. Detailed structure (higher angular resolution)

Res. < 0."1 (~10 AU) is required

- Typical size of a disk ~ 100 AU
- Nearest star-forming regions: d = 140 pc
- •Atmospheric blurring ~0."6
- Diffraction limit: $\sim \lambda/D < 0.1$ arcsec with a 8-m telescope at NIR
- \rightarrow Solution: Use of adaptive optics from the ground
- 2. Inner region (higher contrast)

Need to eliminate stellar light
Adaptive optics (high angular resolution)
Polarization differential imaging

Polarization differential imaging (PDI) with Subaru

- Subaru/HiCIAO + AO188
- *H* band (1.64 μm)
- FWHM = 0.06" = 8 AU at 140 pc (typical)
- PDI: Powerful to remove the stellar light
- →Inner working angle

r ~ 0.2" = 30 AU at 140 pc (typical)

(Weintraub et al. 2000, PPVI)

Scattered light is polarized, while starlight is unpolarized.

Observable: Polarized intensity (PI) = (Intensity) × (Pol. degree)

Scat. light imaging with <0.1" resolution

AB Aur (Hashimoto+ 2011)

SAO 206462 (Muto+ 2012)

LkCa 15 Thalmann+ (2010)

J1604-2130 (Mayama+ 2012)

MWC 480 (Kusakabe+ 2012)

MWC 758 (Grady+ 2013)

UX Tau A Tanii+ (2012)

PDS 70 (Hashimoto+ 2012)

Spirals

Two systems with clear, compact spirals

Spiral feature may not be unique

- Modeling based on the densitywave theory
 - \rightarrow launching point, r_c
 - \rightarrow scale height (~ *T* distribution)
- Amplitude (if density fluctuation)
 - $\rightarrow M_{planet} \sim 0.5 M_{Jup} \text{ for SAO 206462}$ $M_{planet} \sim 5 M_{Jup} \text{ for MWC 758}$
- Temporal variation?

Rotation of the spiral pattern can be different from the local Keplerian speed.

SAO 206462 (Muto et al. 2012)

MWC 758 (Grady et al. 2012)

Best-fit external perturber			
	SAO 206462 S1	SAO 206462 S2	MWC 758 South
r _c	0.39" (55 AU)	0.9" (130 AU)	1.55″
h _c	0.08	0.24	0.18

Subaru vs. TMT

Hydro-dynamical simulations for scattered light images at 1.6 µm

Calculations by T. Muto in the Japanese TMT science case book (2011)

Rp = 10 AU $M_p \sim M_{Saturn}$ Rp = 30 AURp = 100 AULog(mJy/arcsec²) D = 8 m2 IWA > 0.2" 0.1" 0.2" 0.5" 30 AL 70 AU D = 30 m2 0.1" 0.2" 0 5"

Subaru vs. TMT

Hydro-dynamical simulations for scattered light images at 1.6 µm

Calculations by T. Muto in the Japanese TMT science case book (2011)

Disk structure in submm

ALMA observations in Cycle 0 (~0.3"—0.5")
 Strong azimuthal asymmetry (x10—100 in flux density)
 Forming site of rocky objects?

Multi-wavelength data

(van der Marel+ 2013)

Segregation of dust particle size is also confirmed radially for some disks using VLA at ~1 cm (Perez et al. 2012)

- Better constraint on disk spatial structure
- λ-dependence of opacity

Summary

• High angular resolution of TMT will uncover

- Detailed structure caused by an interaction with a planet less massive than the Jupiter
- Inner planet-forming regions (< 30 AU)
- Temporal change (rotation) of the structure
- Multi-wavelength study is essential to understand disks. ALMA will provide us stimulating sample for TMT.
- We do not forget gas (H₂, organic molecules...).
 - Constraints on formation of gas-giant planets, orbital evolution of planets
 - Inner disks can be kinetically resolved
 - Astrobiological interests