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Intfroduction. Dark energy

Gravitational fime delays
Past
Present
Future: TMT
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Observables: flux, position, and arrival time of the multiple 1images
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Steps:

* Measure the time-delay
between two 1mages
Measure and model the
potential
Infer the time-delay
distance
Convert it into
cosmlogical parameters
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1964 Method proposed
/0s First lenses discovered

80s First time delay measured
* Controversy. Solution: improve sampling

90s First Hubble Constant measured

* Conftroversy. Solution: improve mass models

2000s: modern monitoring (COSMOGRAIL,
Fassnacht & others); stellar kinematics (Treu &
Koopmans 2002); extended sources

2010s: Putting it all together: precision
measurements (6-/% from a single lens)

2020s: 100s of lenses with TMT and LSST




Time delay - 2-3 %

* 550 %C'8osTA%5‘cE%””? P T er s i
Astrometry — 10-20 mas

* Hubble/VLA/(Adaptive Optics?)

Lens potential (2-3%)
DR ey gy T &

S’rruc’rure along the line of sight (2-3%)

alaxy coun6 8nd numerical simulations
uyu et al. 2

* S’rellor klnemohcs (Koopmans et al. 2003)
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Keck LRIS Lens environment +
Millennium Simulation
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Velocity dispersion:

323 + 20 km/s Suyu et al. 2013a
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] RXJ1131 + WMAP7

1 In combination with WMAP7
] in flat wCDM cosmology

Precision comparable
to that of B1608+656

Accuracy?

After completing the blind
analysis and agreeing we
would publish the results
without modification once

unblinded...
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1 In wCDM cosmology:
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Cosmological Probe Comparison |

WMAP70wCDM prior [Suyu et al. 2012]
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e contour orientations are different: complementarity b/w probes
e contour sizes are similar: lensing is a competitive probe
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*Currently ~10 lenses ‘ \ midterm SN + CMB ]
have precise time- : '
delays

*Future telescopes (e.g.
LSST) will discover

150 Lenses improy
FOM x5 -

and measure 100s of

time delays (Ogur1 & .
Marshall 2010; Treu F o wilhotime deiays
2010) - ---no time delays
*A time delay survey :
could provide very
Interesting constraints
on dark energy

Linder 2011







Large imaging survey. Technology under development
DES (~1000 lensed QSOs, including 150 quads)
HSC (~1000 lensed QSOs, including 150 quads)
LSST (~8000 lensed QSOs, including 1000 quads)

LSST will also provide time delays from the survey data itself

Alternatively one can use smaller telescopes for monitoring
known lensed quasars — robotic (Las Cumbres
Observatory) or tfraditional (e.g. The Himalayan Chandra
Telescope)




Confirmation: <0.1" resolution imaging (AO)

Deflector mass modeling: redshifts and stellar velocity
dispersions. Now few hours of Keck, ~15m/target with TMT

Deflector mass modeling: high fidelity of the host galaxy of
the lensed quasar at ~30mas resolution. Keck ~3hrs/target;
TMT: 15m/target or less with TMT

Courtesy of C.Fassnacht




Time delays as probes of cosmology:

Are competitive and efficient in terms of telescope
time/resources per figure of merit

Results so far are consistent with other methods:

Dark energy is consistent with being a cosmological
constant (not varying with time)

The universe appears to be “Flat”

TMT can play a major role by providing deep and
high resolution follow-up of future upcoming
Imaging surveys
150 lenses would require ~100 hrs of TMT vs 150 nights
of Keck




“That wraps it up --
the mass of the universe."




