Dark energy with TMT

Outline

Introduction. Dark energy

Gravitational time delays

- Past
- Present
- Future: TMT

The Dark Universe

What is the universe made of? (2013)

Is this model correct? And, if so,

what is causing acceleration?

Cosmography with

gravitational lensing

What is Gravitational Lensing? Matter curves space...

Cosmography from time delays: how does it work?

Excess time delay

geometric time delay

Observables: flux, position, and arrival time of the multiple images

Time delay distance in practice $\Delta t \propto D_{\Delta t}(z_s, z_d) \propto H_0^{-1} f(\Omega_m, w, ...)$

Steps:

- Measure the time-delay between two images
- Measure and model the potential
- Infer the time-delay distance
- Convert it into cosmlogical parameters

Planck XVI Low redshift measurements (like TD) are essential

Cosmography from time delays: A brief history

- * 1964 Method proposed
- * 70s First lenses discovered
- * 80s First time delay measured
 - * Controversy. Solution: improve sampling
- * 90s First Hubble Constant measured
 - * Controversy. Solution: improve mass models
- * 2000s: modern monitoring (COSMOGRAIL, Fassnacht & others); stellar kinematics (Treu & Koopmans 2002); extended sources
- * 2010s: Putting it all together: precision measurements (6-7% from a single lens)
- * 2020s: 100s of lenses with TMT and LSST

Cosmography with strong lenses: the 4 problems solved

- * Time delay 2-3 %
 * Tenacious monitoring (e.g. Fassnacht et al. 2002); COSMOGRAIL (Meylan/Courbin)
- * Astrometry 10-20 mas
 * Hubble/VLA/(Adaptive Optics?)
- Lens potential (2-3%)
 Stellar kinematics/Extended sources (Treu & Koopmans 2002; Suyu et al. 2009)
- * Structure along the line of sight (2-3%)
 - * Galaxy counts and numerical simulations (Suyu et al. 2009)
 - * Štellar kinematics (Koopmans et al. 2003)

Present: Blind Analysis of

1131-1231

Time delays of RXJ1131-1231

Time delay with 1.5% accuracy! [Tewes et al. 12b (1208:6009)]

Based on state-of-the-art curve modeling techniques [Tewes et al. 12a (1208:5598)]

Lens Model

Line-of-sight Effects

Cosmological Results

Blinded

In combination with WMAP7 in flat wCDM cosmology

Precision comparable to that of B1608+656

Accuracy?

After completing the blind analysis and agreeing we would publish the results without modification once unblinded...

Constraints from Two Lenses

In combination with WMAP7 in wCDM cosmology: $H_0 = 75.2^{+4.4}_{-4.2} \text{ km s}^{-1} \text{ Mpc}^{-1}$ $\Omega_{de} = 0.76^{+0.02}_{-0.03}$ $w = -1.14^{+0.17}_{-0.20}$

Suyu et al. 2013a

Cosmological Probe Comparison I

WMAP7owCDM prior

[Suyu et al. 2012]

contour orientations are different: complementarity b/w probes
contour sizes are similar: lensing is a competitive probe

Planck vs WMAP

Future Prospects

•Currently ~10 lenses have precise timedelays •Future telescopes (e.g. LSST) will discover and measure 100s of time delays (Oguri & Marshall 2010; Treu 2010)•A time delay survey could provide very interesting constraints on dark energy

Linder 2011

100s lenses with time-

delays.

How do we do this?

Where to find lenses?

- Large imaging survey. Technology under development
 - DES (~1000 lensed QSOs, including 150 quads)
 - HSC (~1000 lensed QSOs, including 150 quads)
 - LSST (~8000 lensed QSOs, including 1000 quads)
- LSST will also provide time delays from the survey data itself
- Alternatively one can use smaller telescopes for monitoring known lensed quasars – robotic (Las Cumbres Observatory) or traditional (e.g. The Himalayan Chandra Telescope)
- THE TRUE BOTTLE NECK WILL BE HIGH RESOLUTION IMAGING AND SPECTROSCOPY (Treu et al. 2013, arXiv)

The role of TMT

- Confirmation: <0.1" resolution imaging (AO)
- Deflector mass modeling: redshifts and stellar velocity dispersions. Now few hours of Keck, ~15m/target with TMT
- Deflector mass modeling: high fidelity of the host galaxy of the lensed quasar at ~30mas resolution. Keck ~3hrs/target; TMT: 15m/target or less with TMT

Courtesy of C.Fassnacht

Conclusions

- Time delays as probes of cosmology:
 - Are competitive and efficient in terms of telescope time/resources per figure of merit
- Results so far are consistent with other methods:
- Dark energy is consistent with being a cosmological constant (not varying with time)
- The universe appears to be "Flat"
- TMT can play a major role by providing deep and high resolution follow-up of future upcoming imaging surveys
- 150 lenses would require ~100 hrs of TMT vs 150 nights of Keck

