

MICHI: A MIR Instrument for the TMT

Chris Packham

NAOJ & University of Texas at San Antonio

M. Honda, **M. Richter**, Y. K. Okamoto, **M. Chun**, H. Kataza, T. Onaka, T. Fujiyoshi, A. Alonso-Herrero, J. Carr, C. Chen, M. Chiba, K. Enya, H. Fujiwara, P. Gandhi, T. Greathouse, M. Imanishi, K. Ichikawa, **H. Inami**, Y. Ita, N. Kawakatsu, T. Kotani, N. Levenson, E. Lopez Rodriguez, T. Matsuo, M. Matsuura, T. Minezaki, J. Najita, **N. Oi**, T. Ootsubo, K. Pontoppidan, P. Roming, **I. Sakon**, M. Takami, C. Telesco, A. Tokunaga, T. Yamashita

Outline

- TMT & MIR instrumentation
 - Original Science Cases => instrument spec.
 - ◎ MICHI 未知
 - Current status
 - Connection to new (draft) ISDT science cases
 - Summary

TMT's Key Science Cases

Thirty Meter Telescope Detailed Science Case: 2007

TMT Science Advisory Committee

TMT Science Addressed by MIR

I.What is the nature and composition of the Universe?

2. When did the first galaxies form and how did they evolve?

3.What is the relationship between black holes and galaxies?

4. How do stars and planets form?

Lensed QSO's, high-z redshifted spectral lines to MIR wavelengths

Evolution via imaging & lowresolution spectra of redshifted lines

AGN Studies, ULIRGS; extending from local to moderate-z

Disk analysis, imaging of planet 'fingerprints' in disk

5.What is the nature of extrasolar planets?

6. Is there life elsewhere in the Universe?

Low- and high-spectral resolution analysis of disk chemistry

High spectral resolution of biomarkers

MIR Transformative Science

I.What is the nature and composition of the Universe?

2.When did the first galaxies form and how did they evolve?

3.What is the relationship between black holes and galaxies?

Lensed QSO's, high-z redshifted spectral lines to MIR wavelengths

Evolution via imaging & lowresolution spectra of redshifted lines

AGN Studies, ULIRGS; extending from local to moderate-z

4. How do stars and planets form?

Disk analysis, imaging of planet 'fingerprints' in disk

5. What is the nature of extrasolar planets?

Low- and high-spectral resolution analysis of disk chemistry

6. Is there life elsewhere in the Universe?

High spectral resolution of biomarkers

Lots of Discussions in USA & Japan

MICHI (未知) Concept

- Japanese lead by Y. Okamoto & M. Honda USA lead by C. Packham, M. Chun, & M. Richter
 - Strong MIR community interest in Japan & USA
 - NSF seed funding (PI: Packham) to define key science drivers & optical design
 - J-TMT funds (PI: Honda-san) for chopping & AO early R&D
- Instrument capabilities
 - High spatial resolution (0.063")
 - High spectral resolution (R~120,000)
 - Moderate spectral resolution (R~1,000)
 - IFU & polarimetry modes

- Only with high spatial resolution, we can lower the contamination from host galaxy to AGN signal
- Resolution at z=0.5
 - JWST = 1.5kpc (galactic star forming rings, etc.)
 - TMT = 330 pc (nuclear dominated)
- Images show 5x increase in spatial resolution

- Only with high spatial resolution, we can lower the contamination from host galaxy to AGN signal
- Resolution at z=0.5
 - JWST = 1.5kpc (galactic star forming rings, etc.)
 - TMT = 330 pc (nuclear dominated)
- Images show 5x increase in spatial resolution

Spatial Resolution & Spectra

Diaz-Santos PhD Thesis

- Surrounding area contamination complicates interpretation
 - MIR constrains torus to <few pc & clumpy distribution
 - I" resolution of nearby AGN shows AGN contribution (<)<30%
- Image quality & stability a problem for 8m's
 - JWST & AO systems on 30m-class telescopes => high Strehls

Spatial Resolution & Spectra

Diaz-Santos PhD Thesis

- Surrounding area contamination complicates interpretation
 - MIR constrains torus to <few pc & clumpy distribution
 - I" resolution of nearby AGN shows AGN contribution (<)<30%
- Image quality & stability a problem for 8m's
 - JWST & AO systems on 30m-class telescopes => high Strehls

TMT Parameter Space

- 未知 fits very well into the wavelength and spatial/ spectral resolution plot of the TMT
- 未知 & the Mid-IR AO system (MIRAO) optimized for>7.5µm
 - MIRAO to offer
 excellent IQ
 at 3 & 5 μm
 - 未知 could offer limited 3 & 5 µm capabilities
 - Currently considering this point carefully

Spatial Resolution (milliarcseconds)

- Notes
 - $\circ~$ Point source sensitivity 10σ in one hour elapsed time
 - *E-ELT* at MIR offers D^4 performance boost from primary
 - Estimated from publications (simple scaling) or on-line calculators
 - Observing/conditions assumptions can be widely different between groups

Block Diagram of Optics

Mid-IR Adaptive Optics (MIRAO) & Daytime Observing

- Daytime observing
 - MIRAO/未知 could exploit excellent seeing conditions in early morning hours
 - Appears feasible with no loss in performance for many bright objects; affords extra 1-2 hours per night of TMT observing time
 - Need to understand operational implications
 - R&D efforts
 - New NB filters in hand to be used on Subaru's AO system soon
 - We appreciate the help of the Subaru AO team (especially Hayano-san)

Strehl Ratios

- FWHM of images/spectra do not tell the whole story
 - Strehl ratio is also crucial of course, especially in regions where the source(s) is embedded in diffuse emission
 - Typical for MIR observations

• Telescope	Size	Strehl (8µm)
Spitzer	85cm	95%
TMT	30m	90%
JWST	6.5m	80%
Gemini	8.1 m	~20-30%

未知 Status

- Science cases (Okamoto, Packham, Tokunaga, et al. 2010) 'flowed' down into requirements
- Requirements addressed by feasibility level design (Tokunaga, Packham, Okamoto, et al. 2010)
- Reference document produced (2010)
 - Packham et al. 2011a, 2011b, Okamoto et al. 2010
- Presentations at TMT instrument/science workshops (2011, 2013, 2014)
- Updating science cases to enhance 'killer-apps'
 - Exo-planets, extragalactic as foci
 - Connection to new ISDT outputs being considered
- Graduate students exchanged over past years
- NSF MSIP proposal

NSF MSIP Reviews

- Submitted \$4.4M proposal to NSF's MSIP
 - Thanks to the TMT & SAC for their help & approval
- Review comments very helpful:
 - The proposal makes a strong case for the necessity of a mid-IR camera with high dispersion capabilities at the TMT. The proposed science drivers (e.g. gas dynamics and organic molecules in YSOs, characterization of extrasolar planet atmospheres, study of AGN tori and Solar System observations) squarely fit with the primary science objectives motivating the construction of TMT and are at the forefront of astronomy.
 - Given that the NSF participation in the TMT is still not confirmed, there is an element of risk that this instrument will not be accessible for the broader astronomical community outside the TMT consortium.
 - It would complement future contemporaneous facilities such as JWST

NSF MSIP Reviews

- Intellectual merit is well presented and very compelling
- The thought that has gone into the scientific impact is impressive and complete
- If NSF participation in TMT is a realistic possibility, this proposal represents a positive step for the U.S. astronomical community. The science is compelling and well presented. The group has the right experience and expertise to make this effort successful
- The science case for MIR with TMT is broad and compelling
- The science case for a mid-IR instrument on a 30m telescope is strong, and the preliminary design of this complex instrument is important and worthy of funding

ISDT Connections

- ISDT (International Science Definition Teams) updating science cases for TMT
 - Last TMT science case was produced 2007
- Illustrative science cases from selected draft versions of the ISDT products follow

[Our] Solar System

- Thermal waves in gas-giant planets will probe the chemistry & atmospheres that give rise to features such as the Great Red Spot
- Volcanoes on lo can be used as occultation source(s) revealing complex structures in the Jovian atmosphere
 - IFU could reveal 5-10 occultations simultaneously
- Io will be resolved by up to 26 resolution elements
 - Where does the SO₂ atmosphere comes from: volcanoes or sublimation?
- Mars' atmosphere will be resolvable
 - Able to measure the abundances

Birth of Stars & Planets

- Star formation process & trigger
- Class I binary protostars can be resolved by 未知 in nearby SF regions
 - Complementary to ALMA's Class 0 goals
- Heated dust around massive protostars
 - 1,000 AU structures resolved to distance of 3 kpc
- Protoplanetary discs are precursors of planets, and hence life
 - When, where and how do planets form/evolve?
 - MIR can probe the building blocks & mechanisms of planetary formation

IFU Spectroscopy of Planet Forming Disks

- Spatially resolved N-band spectra of β Pic debris disk (Okamoto+2004)
- Spatial difference of dust feature
 - Central condensation of crystalline silicate grains
 - Several local peaks of small amorphous silicate

IFU Spectroscopy of Planet Forming Disks

Artist's view of β Pic planetesimal disk

- Spatially resolved N-band spectra of β Pic debris disk (Okamoto+2004)
- Spatial difference of dust feature
 - Central condensation of crystalline silicate grains
 - Several local peaks of small amorphous silicate

IFU Spectroscopy of Planet Forming Disks

With an IFU, we can reveal 2D dust distribution

• For *face-on disks*, 2D dust distribution excellent for tracing planetesimal belts

 \rightarrow Slit-scan \rightarrow time-consuming, background variation/transparency can be very troubling

- Also eliminates slit loss, well matched to AO observations, fixed spectral resolution, flux calibration improved, and no slit positioning concern
- "The Universe is not 1 Dimensional", R. Davies

High Spectral Resolution (R~120,000) Source Numbers

- Spitzer protoplanetary disc observations of strong emission shows oxygen & carbon species
- Snow line in discs important to probe water location
 - Observed Spitzer, requiring high spatial & spectral resolutions
- Huge increase in available objects
 8m (~30) to 30m (~100's)
- Possibility of prebiotics at such resolutions

Extragalactic/AGN Observations

- The torus intercepts & re-radiates emission, peaking at MIR
 - Torus and activity rate shows change in morphology and perhaps existence, consistent with disc/wind models(?)
 - Need high spatial resolution to disentangle the stellar and/ or nuclear dust emission from the AGN
- ULIRGs could be starburst or AGN dominated
 - High spatial resolution MIR can differentiate sources
- Understanding the connection of the SMBH to the host galaxy remains a key goal: Mσ relationship
 - Local galactic cores remain difficult to understand
- MIRI/JWST excellent sensitivity, but does not have the required spatial resolution; may not provide much progress
 - Brightness limits may prevent some objects to be observed (?)

未知 Summary

- Very preliminary (feasibility level) design achieved
- Science cases should be updated & flowed down to instrument requirements formally
 - Japan/USA collaboration is strong
- ISDT connections are strong
- Science synergies to other observatories clear
- Reviews from NSF MSIP generally positive
 - But still didn't get any money...!
- Good collaborations with E-ELT METIS

Extra Slides

TMT/MK as the Premier MIR Site

- PWV median of Mauna Kea(MK) is 1.86mm, Armazones 2.87mm
 - Many more, and/or superior, MIR nights => better results
- Time needed to complete observing program on TEXES (R~100,000) Gemini proposals demonstrates MK's superiority
- 未知 is the only 30m instrument to offer
 - 20μm capability
 - High spectral resolution
 - MIR IFU
 - Polarimetry

