

'Polarimetry and Time Resolved science Working Group' Time Domain ISDT Discussion July 18, 2014

Warren Skidmore TMT TD-ISDT meeting, Tucson

TMT.PSC.PRE.14.046.DRF01

THIRTY METER TELESCOPE

Warren Skidmore on behalf of The Polarimetry and Time Resolved Working Group

TMT.PSC.PRE.14.023.REL01

Abstract

The observatory requirements needed to support Polarimetric and Time Resolved observing programs are being explored. Many different observing programs covering a range of different science areas are being considered. Technical and cost implications will be balanced with scientific impact, new requirements will be generated with supporting science cases. Science areas include Exoplanet Characterisation, GRBs, Supernovae, Kilonovae, CVs, LMXBs, Neutron Stars, White Dwarfs, Star Formation, Starburst Galaxies, Galactic Structure, QSOs and AGN, Asteroids and Kuiper Belt Objects, This work is being carried out by a large number of people.

iterations.

Polarimetry Observing Programs

Star and planetary formation	Searches for biomarkers on exoplanets
Kinematics around young stars	Flare stars
Direct detection and characterization of	Magnetic field mapping of solar type stars
exoplanets	peculiar stars, variable stars, evolved stars, etc.
Exoplanet magnetic fields	Brown Dwarf atmospheric processes
Studies of organic molecules, their formation and	Dust structure, outflow geometries and emission
delivery mechanisms	mechanism in QSOs
Soft y-ray repeaters	Galactic magnetic field structure
Cataclysmic Variables	Structures and kinematics in starburst galaxies
Interstellar polarization and diffuse interstellar	Dust distribution and magnetic field structure in
bands	the solar neighborhood
Anisotropy of supernovae explosions	γ-ray bursts
Characterizing NEOs for sample return missions	Magnetic fields of compact objects

Time Resolved Observing Programs

Observing program	Resolution	Wavelength range	Observation details ²	Integration time ³
White dwarf surface Calcium pulsation mapping	6000	370nm to 640nm	Time resolved spectroscopy for a few hours of Mg II (4480Å) & Ca K (3933Å) to identify oscillations	12s
White dwarf and sdB star asteroseismology	4000	340nm to 610nm	Time resolved spectroscopy to get pulsation spectra of different modes	5s
	50,000	370nm to 520nm	Mode identification	5s
Pulsar non-radial oscillations and rotation	~100	340nm to 1200nm	Spin phase resolved spectroscopy with frame transfer EMCCDs	0.1ms
Prompt observations of GRBs & GRB afterglow	~100	400nm to 2200nm	TOO time resolved spectroscopy with Mv of 18 to 22	1s
Supernova core collapse shock breakout	2000	525nm to 950nm	TOO time resolved spectroscopy of targets from surveys	15s
		4500nm to 5100nm	TOO time resolved spectroscopy of targets from surveys	15s
Detached WD-WD merger candidates	~5000	370nm to 450nm	Time resolved spectroscopy to get orbital radial velocities ⁴	30s
Doppler tomography of Cataclysmic Variables	>4500	320nm to 2400nm	Time resolved spectroscopy of orbital changes in line profiles	15s
Cataclysmic Variables: Spectral eclipse mapping	~1000	320nm to 950nm	Rapid spectroscopy to look at line profile changes during eclipse	100ms
Cataclysmic Variables: Studies of rapid variability	~3000	320nm to 950nm	Rapid spectroscopy to look at rapid continuum and line variability	50ms
LMXB echo mapping and Bowen blend secondary star measurements	1000	450 to 700nm	Correlation between X-ray and optical continuum and line emission (especially Bowen Blend 464nm and Hell 469nm)	100ms
Magnetic fields and habitable zones around dwarf flare stars	4000	350nm to 700nm	Time resolved spectroscopy of emission line & continuum changes	0.1s
Exoplanet studies: Transits, secondary eclipses & surface mapping	1000	Parts of 700nm to 5000nm	Time resolved spectroscopy of ingress and egress lasting about 30 min around Mv>10 host stars	<30s
Exoplanet studies: Rossiter-McLaughlin effect	60000	550nm	Time resolved spectroscopy of 2hr transit around Mv>15 host star	96s
Asteroid morphology, binarity and composition	~1000	800nm to 2500nm	IFU observations of 0.03° sized resolved target rotating in 2 mins or unresolved objects in a binary each with 2 min light curves and a separation of 0.02°	15s
Asteroid orbits	Broadband imaging	Optical/NIR	Wide field AO assisted astrometric observations with an astrometric error of 0.03"	72s
TNO/Kuiper Belt object occultations	~1000	340nm to 5000nm	Rapid spectroscopy of background star with occultation event lasting between 1s and 200s	10ms

Ramifications of exploring time resolved requirements

- Lots of high impact science require time resolution between 10⁻⁴s to 100s - Baseline capabilities of 1st light instruments being explored
- 1st light instrument teams are being 'sensitized' to time resolved science
- Scope for cost neutral changes to reduce dead time and readout rates
- Future instrument designs will respond to community demand
- Development of future instruments will be more rapid than for 1st light
- Cost neutral emerging new requirement is for a high accuracy time server

The process for exploring polarimetric

requirements

- We have determined acceptable error bars and observing requirements for a variety of observing programs covering a range of science areas - We will determine each program's tolerable instrumental polarization - Zemax modeling is being used to estimate the baseline polarimetric performance for a range of exposure times

- We will explore simple steps that can improve polarimetric performance - Polarimetry budget and draft subsystem requirements will be generated - We will determine which science programs can be supported with the baseline and optimal designs

- Technical and cost implications of additional baseline and optimized requirements will be balanced against the scientific merits of programs that are enabled

No requirements on readout time in the TMT SRD

- But the telescope is required to slew fast (<5 mins)
- Instruments are required to begin observations fast
- Plan for ToO observations of transient objects
- A lot of important science needs time resolved capabilities
- We need some technical requirements to direct the instrument and observatory design and operations

Aims/Overview

Definitions

- The stalled process of developing time resolved observing requirements
 - Science areas being considered
 - Emerging requirements
- Issues/difficulties arising during DSC development
 - Lacking specific information on detector capabilities
- The Question to the TD-ISDT
 - Develop detector system performance estimates for time resolved modes? [Task imposed on instrument teams]
- Next steps (assuming 'yes'!)
 - TD-ISDT to develop possible detector readout configurations

Definitions

Time resolved observations for t_{samp}≤6 minutes

- − Processes with timescales \leq 30 minutes.
- Detector readout schemes and data handling needed proper planning to ensure high (>80%) observing efficiency

Stalled process

- 'Exploration of Time Resolved Instrument Requirements.'
 - Document circulated to instrument teams, 21st January 2013
 - TMT.PSC.TEC.13.003.DRF01 in DCC collections 7260
 Wavelength range, spectral and temporal resolution
 - Lacks specific information about required readout modes
 - e.g. how many windows and what size and positions would be needed for multi-object spectroscopy?

• i.e. How would science observations be gathered in practice

- No specific feedback received from instrument teams
 - Except for 'bathroom conversations' indicating that nothing seemed particularly crazy

Observing program	Resolution	Wavelength range	Observation details ²	Integration time ³
White dwarf surface Calcium pulsation mapping	6000	370nm to 640nm	Time resolved spectroscopy for a few hours of Mg II (4480Å) & Ca K (3933Å) to identify oscillations	125
White dwarf and sdB star asteroseismology.	4000	340nm to 610nm	Time resolved spectroscopy to get pulsation spectra of different modes	5s
	50,000	370nm to 520nm	Mode identification	5s
Pulsar non-radial oscillations and rotation	~100	340nm to 1200nm	Spin phase resolved spectroscopy with frame transfer EMCCDs	0.1ms
Prompt observations of GRBs & GRB afterglow	~100	400nm to 2200nm	TOO time resolved spectroscopy with My of 18 to 22	1s
Supernova core collapse shock breakout	2000	525nm to 950nm	TOO time resolved spectroscopy of targets from surveys	15s
		4500nm to 5100nm	TOO time resolved spectroscopy of targets from surveys	15s
Detached WD-WD merger candidates	~5000	370nm to 450nm	Time resolved spectroscopy to get orbital radial velocities ⁴	30s
Doppler tomography of Cataclysmic Variables	>4500	320nm to 2400nm	Time resolved spectroscopy of orbital changes in line profiles	15s
Cataclysmic Variables: Spectral eclipse mapping	~1000	320nm to 950nm	Rapid spectroscopy to look at line profile changes during eclipse	100ms
Cataclysmic Variables: Studies of rapid variability	~3000	320nm to 950nm	Rapid spectroscopy to look at rapid continuum and line variability	50ms
LMXB echo mapping and Bowen blend secondary star measurements	1000	450 to 700nm	Correlation between X-ray and optical continuum and line emission (especially Bowen Blend 464nm and Hell 469nm)	100ms
Magnetic fields and habitable zones around dwarf flare stars	4000	350nm to 700nm	Time resolved spectroscopy of emission line & continuum changes	0.1s
Exoplanet studies: Transits, secondary eclipses & surface mapping	1000	Parts of 700nm to 5000nm	Time resolved spectroscopy of ingress and egress lasting about 30 min around Mx>10 host stars	<30s
Exoplanet studies: Rossiter-McLaughlin effect	60000	550nm	Time resolved spectroscopy of 2hr transit around Mx>15 host star	96s
Asteroid morphology, <u>binarity</u> and composition	~1000	800nm to 2500nm	IFU observations of 0.03" sized resolved target rotating in 2 mins or unresolved objects in a binary each with 2 min light curves and a separation of 0.02"	15s
Asteroid orbits	Broadband imaging	Optical/NIR	Wide field AO assisted astromatric observations with an astromatric error of 0.03"	72s
TNO/Kuiper Belt object occultations.	~1000	340nm to 5000nm	Rapid spectroscopy of background star with occultation event lasting between 1s and 200s	10ms

IEEE 1588 timing signal available

- Observatory is providing an IEEE 1588 time sever available to all subsystems
- No 'Quantum devices'
- All targets are point source except asteroids and PHOs
 - Haven't considered needs for local standards
- Wavelengths 320nm to 5µm
- Spectral resolutions Broad Band to 60,000
- Integration times 0.1ms to 100s (for t_{dead}<t_{int}/4)
- None is backed up with comparison against estimated performance

- Speculative nature of any proposed programs requiring fast readout
 - Low confidence when proposing ambitious programs

Acknowledging that developing proper detector performance estimates requires significant effort by the instrument teams:

'In order to make proper progress with defining time resolved science requirements, does the TD-ISDT think it necessary that proper detector system performance estimates are developed for appropriate observing modes for the first light instruments and potentially active instrument concepts?'

Next Steps

- TMT-India is undertaking some instrument mini-studies that relate to detectors
 - Are performance estimates within the scope and timescale of these studies?
- Anna Moore in her talk today asked about ideas for high time reolution
 - Instrument teams are open but communication has not yet happened
 - Request for readout rate studies will ensure that TR cases are communicated to instrument teams
- TD-ISDT could prepare specifications for exemplar detector readout configurations for different programs
 - Instrument teams could estimate how fast a detector system could read out for various readout modes

3 comparison stars and 1 science target, centrally located in the MOBIE or IRMS FOV. Diagram shows hypothetical slit arrangement with target stars in the slits, not to scale. Assume slit length to be 10" (or a convenient close value for IRMS)

