ISDT Report Time-domain Science

Masaomi Tanaka (National Astronomical Observatory of Japan) **ISDT** time-domain group * at this form (15 members) G.C. Anupama (IIA) (Convener) Warren Skidmore (TMT) (Chapter editor) Masaomi Tanaka (NAOJ) (Convener) Manjari Bagchi (Tata Institute) Varun Bhalerao (IUCAA) Nozomu Tominaga (Konan) U.S. Kamath (IIA) Lingzhi Wang (NAOC) Lucas Macri (Texas A&M) Xiaofeng Wang (Tsinghua) Keiichi Maeda (Kyoto) Chao Wu (NAOC) Shashi Pandey (ARIES) Xufeng Wu (PMO) Enrico Ramirez-Ruiz (UCSC)

Update of Detailed Science Case

- I. Introduction
- 2. Overview
- 3. Fundamental physics and cosmology
- 4. The early Universe
- 5. Galaxy formation and the intergalactic medium
- 6. Extragalactic supermassive black holes
- 7. Exploration of nearby galaxies
- 8. The formation of stars and planets
- 9. Exoplanets
- 10. Our solar system

No section for time-domain science

Thirty Meter Telescope Detailed Science Case: 2007

TMT Science Advisory Committee

Time-domain science??

Time-domain science??

DSC 2014

	5. TIME-DOMAIN SCIENCE	53
Type Ia SN	5.1 Overview	53
	5.2 Understanding the Nature of Type Ia Supernovae	54
Core-collapse SN	5.2.1 Characterizing high-z Type Ia Supernovae: Towards a Better Standard Candle	54
	5.2.2 Unveiling Explosion Mechanism of Type Ia Supernovae	55
	5.3 Identifying Shock Breakout of Core-Collapse Supernovae	56
SN progenitor	5.4 Tracing high-z Universe with Supernovae	57
	5.5 Hunt for Progenitor Systems of Supernovae	58
GW SOURCAS	5.5.1 Detecting Progenitor and Companion of Supernovae	58
	5.5.2 Characterizing Circumstellar environment around Supernovae	59
	5.6 Identification of Gravitational Wave Sources	00 60
GRBS	5.0 Identification of Gravitational-Wave Sources	61
	5.7 Onderstanding Progenitors of Gamma-ray Bursts. Connection to Supernovae and Kilonovae	01 62
Tidal disruption	5.0 Flubling Fight-2 Universe with Gamma-Tay Bursts	0Z
i laar alsi apelon	5.9 Studying Tidal Disruption Events and Supermassive Black Holes	03 64
	5.10 Cataciysifiic valiables	04
CVS	Evolution During Outburst Cycles	65
	5.10.2 Revealing Geometry and Populations of Classical Novae	66
Pulsars	5.11 Companions of Binary Radio Pulsars	67
	5.12 Improving the Hubble Constant and Measuring Extragalactic Distances	68
	5.13 Summary of Requirements	69
Cepheids	5.14 References	72

Time-domain science??

	Target of o observ	unity		
Type la SN	GW so	ources	Tidal disruption	
Core-collapse	SN GR	Bs	Classical novae	
	Rapid re (telescope,	espons opera	e tion)	

Time-resolved observations

CVs, X-ray binary (accretion disk) Pulsars Rapid sampling (instruments)

Monitoring observations

Cepheids
BinariesRR Lyrae
AGNsFlexible
time allocation

Frontier: Short timescale transients

Theoretically expected

(after PTF collaboration, Rau+09, Kasliwal+,Kulkarni+)

First transient survey with Subaru/HSC (2014 July 2-3 UT)

The Astronomer's Telegram

First supernova candidates discovered with Subaru/Hyper Suprime-Cam

ATel #6291; Nozomu Tominaga (Konan U/Kavli IPMU, U. Tokyo), Tomoki Morokuma (U. Tokyo), Masaomi Tanaka (NAOJ), Naoki Yasuda (Kavli IPMU, U. Tokyo), Hisanori Furusawa (NAOJ), Jian Jiang (U. Tokyo), Satoshi Miyazaki (NAOJ), Takashi J. Moriya (U. Bonn), Junichi Noumaru (NAOJ), Kiaina Schubert (NAOJ), and Tadafumi Takata (NAOJ) on 4 Jul 2014; 15:51 UT

http://tpweb2.phys.konan-u.ac.jp/~tominaga/HSC-SN/

The moment of supernova explosion

(SFRs, SN progenitor, SN kinetic energy)

Paradigm shift in 2020s: Gravitational waves

2017 -

- Advanced LIGO (US)
- Advanced Virgo (Europe)
- KAGRA (Japan)

NS-NS merger with 200 Mpc

"Multi-messenger" astronomy

Compact binaries
Properties of dense matter
r-process nucleosynthesis

•••

No electromagnetic counterpart No gravitational wave astronomy

GW detection

EM transient search w/ wide-field telescope (e.g., LSST, HSC)

deg

Subaru

HSC

1.5 deg

Source identification (TMT)

LSST

3.5 deg

Smoking gun: spectroscopic identification

Optical/NIR spectroscopy with MOBIE+IRIS ~25 mag for 5 days @ 200 Mpc (> 100 SNe within localization area) NS merger = extremely broad-line, red spectra

GRB as a probe of high-z Universe (by Antonino Cucchiara yesterday)

Chornock+13

- Metal abundances
- HI column density
- Ly alpha escape fraction
- Intervening systems

TMT/IRIS can reach z=8-10!

Need more interaction with other ISDTs

Required response time

Discussion (yesterday)

- System for ToO?
 - Telescope/instruments become ready in 5 min
 Unique capability of TMT
 - Human judge can easily take more time

• To maximize the scientific outcome of TMT:

- Ideally need automated system
- Prepare templates for observing modes (so that observers can quickly select)

Inter-partner ToO observations?

• => Key program

Another frontier: Time-resolved observations

75 ms spectroscopic sampling for cataclysmic variables (also for X-ray binaries)

Required sampling time

Discussion (yesterday)

- To fully utilize 30m aperture
 - I0 ms sampling
 - 80 % efficiency (= 20% dead time)
 - Accurate, absolute time stamp (direct comparison with multi-wavelength data)
 - Need only a small part of FOV

Summary

- Time-domain science needs TMT
 - Il science cases in updated DSC
- Time-domain science in 2020s
 - Synergy with LSST/HSC transient surveys
 - Synergy with gravitational wave telescopes
 - Time-resolved observations with 30m aperture
- Requirement from time-domain science
 - Response within 5 min (=> telescope/operation)
 - I0 msec sampling with >80% efficiency (=> instruments)
 Need more communication with instrument groups
- Key program <=> inter-partner ToO program?