

Collaborators:

DES collaboration. Jennifer Marshall, Josh Simon, Keith Bechtol, Alex Drlica-Wagner, Louis Strigari, Mei-Yu Wang, Eduardo Balbinot, David James, Basilio Santiago, Brian Yanny and many in DES Milky Way Working Group

Jonathan Hargis, David Sand, Denija Crnojević

Studying Milky Way Satellites with the Thirty Meter Telescope

Ting Li 李 婷 李 ティン

Department of Physics and Astronomy Texas A&M University TMT Science Forum, June 24, 2015


Credit: Reidar Hahn, Yuanyuan Zhang

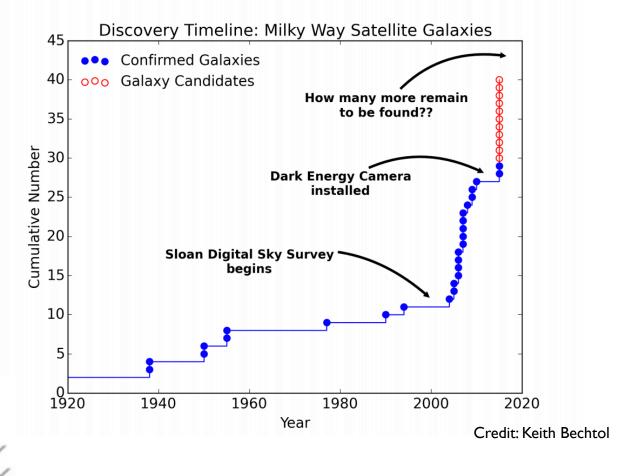
Dark Energy Survey

5 year survey over 525 nights ~5,000 sq. degree ~24th mag in g-band

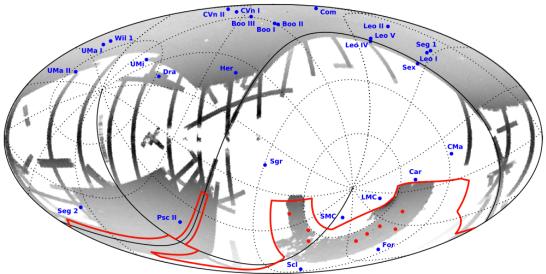
DES Year 1 vs. SDSS on Messier 2

A dramatic improvement in the photometric precision with Blanco+DECam!

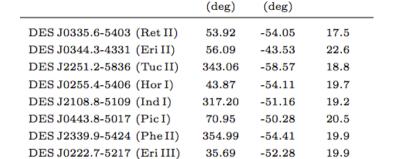
Credit: Josh Simon


And this is just Year 1—deeper, more precise photometry will be produced throughout the five-year survey

Ting Li, Texas A&M University


Discovery Timeline

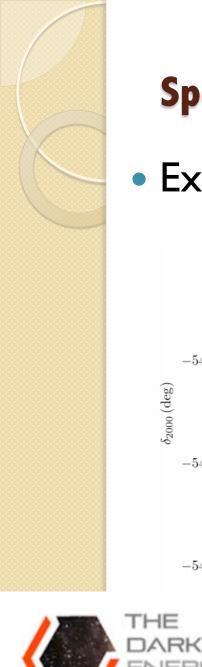
Most satellites discovered in early 2015 involved DECam


Name

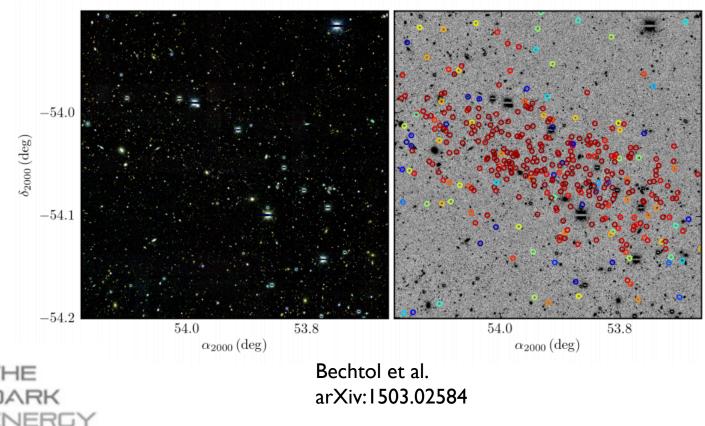
DES Collaboration Bechtol et al. arXiv:1503.02584

Found by non-DES collaboration:

- Gru I (Koposov 2015)
- Kim 2 (Kim 2015a) Ind I
- Peg III (Kim 2015b) SDSS DR10
- Hor II (Kim 2015c)
- Hya II (Martin 2015)

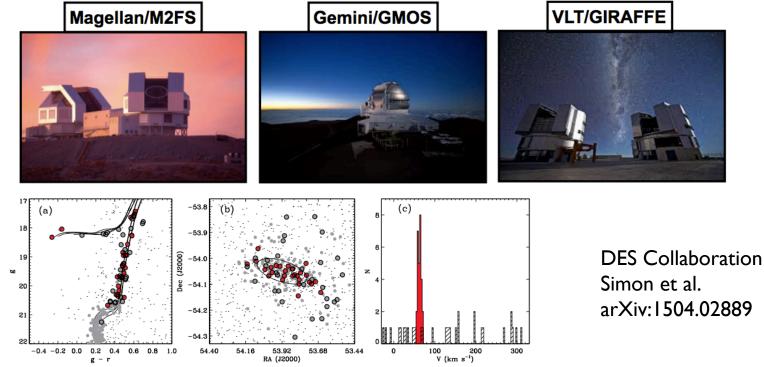


 α_{2000}

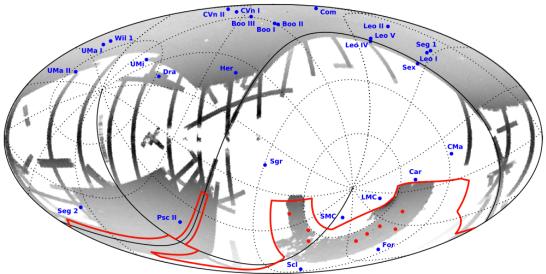

m - M

 δ_{2000}

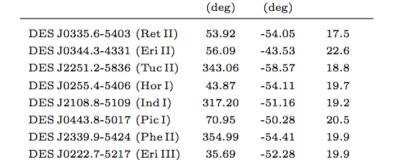
Spectroscopic follow-up


• Example: Reticulum II

Spectroscopic follow-up


• Example: Reticulum II

THE DARK ENERGY SURVEY velocity dispersion of 3.3 \pm 0.7 km/s mass-to-light ratio 470 \pm 210 M_{Sun} / L_{Sun} log₁₀(J) = 18.8 \pm 0.6 GeV² cm⁻⁵


Name

DES Collaboration Bechtol et al. arXiv:1503.02584

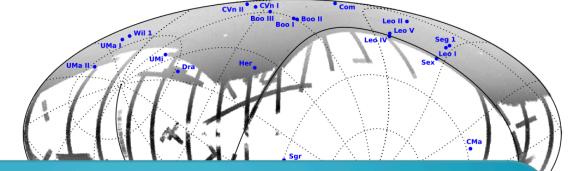
Found by non-DES collaboration:

- Gru I (Koposov 2015)
- Kim 2 (Kim 2015a) Ind I
- Peg III (Kim 2015b) SDSS DR10
- Hor II (Kim 2015c)
- Hya II (Martin 2015)

 α_{2000}

m - M

 δ_{2000}

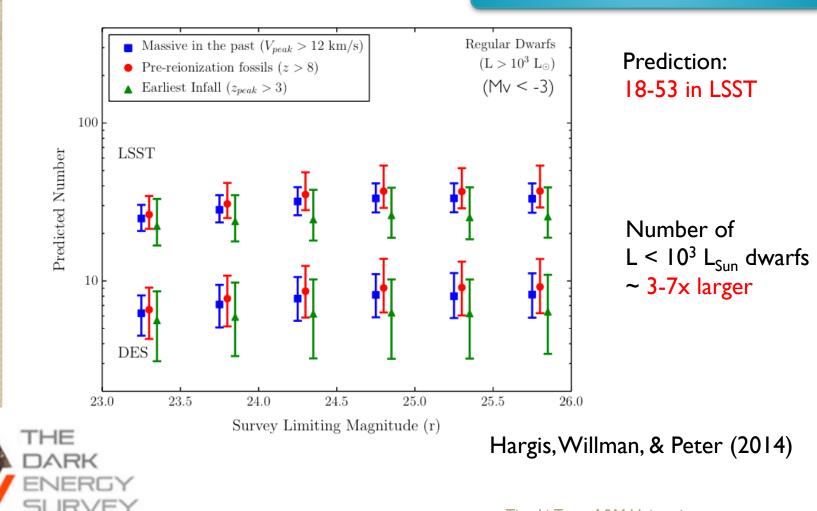

UMa II.s UMA II

DES Collaboration

400+ hours 8 meter telescope time to follow up all these candidates, in order to confirm whether or not they are dwarf galaxies (~20 stars per dwarf galaxy)

~80 hours for a 30 meter telescope w/ MOS TMT/WFOS

• FIYA II (FIAFUIT 2013)	DE5 J0200.4-0400 (HOP 1)	40.07	-04.11	19.7	
THE	DES J2108.8-5109 (Ind I)	317.20	-51.16	19.2	_
	DES J0443.8-5017 (Pic I)	70.95	-50.28	20.5	
	DES J2339.9-5424 (Phe II)	354.99	-54.41	19.9	
	DES J0222.7-5217 (Eri III)	35.69	-52.28	19.9	
DARK					•



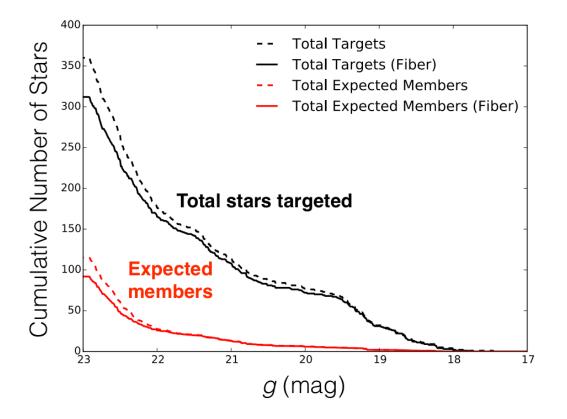
DES Collaboration

most of the sky will have been covered by combination SDSS + PanSTARRS + DES by 2015 newly discovered systems from now on will be even further away / contain fewer bright stars

• FIYA II (MALUII 2013)	DE5 J0200.4-0400 (HOF1)	40.07	-04.11	19.7
•	DES J2108.8-5109 (Ind I)	317.20	-51.16	19.2
	DES J0443.8-5017 (PicI)	70.95	-50.28	20.5
THE	DES J2339.9-5424 (Phe II)	354.99	-54.41	19.9
	DES J0222.7-5217 (Eri III)	35.69	-52.28	19.9
DARK				

Predicted numbers of $L > 10^3 L_{Sun}$ dwarfs within 300 kpc for LSST

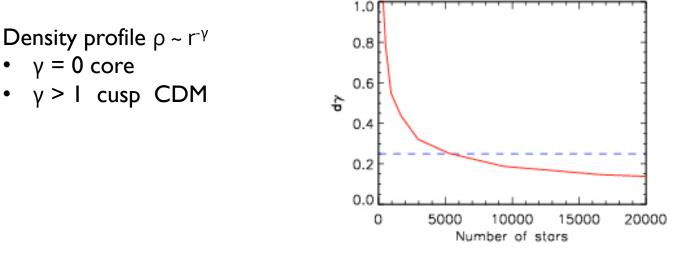
See more at Hargis' poster!



 Missing Satellite Problem → Confirm more ultra faint dwarf galaxy candidates found by current and future imaging surveys

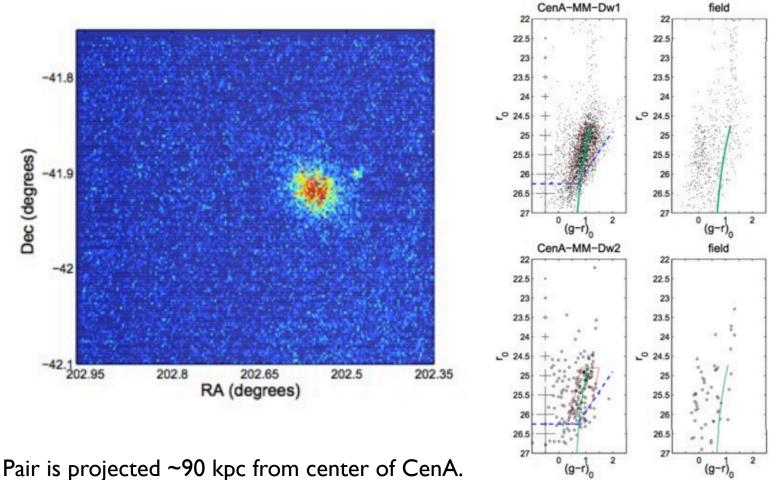
- Missing Satellite Problem → Confirm more ultra faint dwarf galaxy candidates found by current and future imaging surveys
- Constrain dark matter model with better measured J-factor (related to the indirect dark matter search with Fermi-LAT)

Planning spectroscopic follow-up for Tuc II


g~21.5, 20 expected members
g~23, 90 expected members
Constrain the J-factor with more members, or higher RV precision

- Missing Satellite Problem → Confirm more ultra faint dwarf galaxy candidates found by current and future imaging surveys
- Constrain dark matter model with better measured J-factor (related to the indirect dark matter search with Fermi-LAT)
- Cusp/Core problem

Cusp/core problem


Strigari et al. 2007

5000 stars to get delta_ γ < 0.25 9000 stars to get delta_ γ < 0.20 Fornax-like dwarf galaxy 30+ nights per satellite for Keck/DEIMOS, ~8 nights for TMT/WFOS

- Missing Satellite Problem → Confirm more ultra faint dwarf galaxy candidates found by current and future imaging surveys
- Constrain dark matter model with better measured J-factor (related to the indirect dark matter search with Fermi-LAT)
- Cusp/Core problem
- Complete picture of hierarchical assembly of galaxy halos → dwarf galaxies in the Local Group and beyond

A close pair of satellites around Centaurus A Crnojevic et al. 2014

3 kpc projected eparation. Both are at D~3.6 Mpc.

- Missing Satellite Problem → Confirm more ultra faint dwarf galaxy candidates found by current and future imaging surveys
- Constrain dark matter model with better measured J-factor (related to the indirect dark matter search with Fermi-LAT)
- Cusp/Core problem
- Complete picture of hierarchical assembly of galaxy halos → dwarf galaxies in the Local Group and beyond

Going further!

- TMT/WFOS
 - Low-moderate resolution
 - Membership/Kinematics
- TMT/HROS
 - High-resolution
 - Chemical abundance study

Thanks for your attention and questions?