Using Giant Telescopes as Microscopes

Erik Ramberg Albert Stebbins Chris Stoughton Fermilab TMT Science Forum 24 June 2015 Washington, DC, USA

Big Telescopes See Better

Diffraction Limit: $\delta x_{\perp} \gtrsim \lambda R /D$ = 10⁶km (λ/μ m) (30m/D) (R/pc)

For relativistic transients: $\delta x_{\parallel} \ge v \ \delta t = 30 \text{cm} (v/c) (\delta t/n \text{sec})$

small # of γ 's in short δ t requires large aperture #_y ~ π D² f δ t δ v / hv ~ 42 (δ t/nsec) (f/Jy) (D/30m)² (δ v/v)

 $\frac{\text{extreme energetics}}{\mathcal{E}/\#_{\gamma}} = 4 \ (\text{R/D})^2 \ \text{hv} = 10^{25} \text{erg} \ (30 \text{m/D})^2 \ (\text{R/kpc})^2 \ (\mu \text{m/}\lambda)$

The Brightness Frontier

- In terms bright transients radio astronomy far ahead of IR/O/UV
 - shortest radio transients are brightest in terms of brightness temperature
 - radio detectors easily adapted to high temporal resolution

Crab Radio Pulse Structure

Crab is Optical / y-ray Pulsar

ntensity (Au)

GRP Enhanced Optical Pulses

8 (su

ARCONS camera on Hale 200" Strader *et al.* 2013

ARCONS has ~µs temporal resolution

After "stacking" find 3% increase in optical flux during GRP

Optical/Radio Co-observing

Fine scale temporal distribution of GRP correlated photons unknown

• Do they have microburst or nanoshot substructure?

Strategies:

- Auto correlate IR/O/UV photon time of arrivals
- Cross correlate IR/O/UV photon time of arrivals with radio.

Need fast (nsec) detectors to match radio phenomenology!

telescope	observatory	aperture	seeing	sky brightness	mean # of Crab photons per pulse	mean # of "GRP" photons per pulse	mean # of sky photons per pulse
Copernicus	Yerkes	24"	5"	19.0 mag/(")	1.5	0.05	1
Hale	Palomar	200"	1"	21.5 mag/(")	105	3	0.3
тмт	Mauna Kea	30m	0.01"	22.3 mag/(")	3600	108	10

Selected Fast Cameras

camera	relative temporal resolution	technology
LuckyCam	33 msec	EM-CCD
UltraCam	2 msec	CCD
Fordham et al.	45 µsec	MicroChannel Plate Intensified CCD
ARCONS	1 µsec	Microwave Kinetic Inductance Device
TRIFFID OPTIMA	1 µsec	Avalanche Photo Diode
AquEYE IquEYE	10 psec	Silicon Photo Avalanche Diode
Fermilab NanoCam	1 nsec	Photo Multiplier Tube w/ Microchannel Plate

In addition to resolving small structures can be used for:

- intensity interferometry (HBT) w/ separated telescopes for size
- astrophysical photon quantum statistics

Fermilab NanoCam

Using recycled PMT and DAQ from GammeV experiment

Interesting Physics (one idea)

Coherent vs Incoherent Radiation

Incoherent radiation charged particles moving independently $I_v \propto N$

synchrotron, free-free, ...

Coherent radiation charged particles moving synchronously $I_V \propto N^2$

electro-magnetic pulse (EMP)

Sparks are Optically Bright and Even Brighter in Radio!

Crab Nanoshot Numerology

- (Assuming no significant relativistic beaming)
- size: ≈30cm [c ns]
- energy: $\leq 10^{28}$ erg [4 π D² MJy ns GHz]
- peak luminosity: $\leq 1.5 \times 10^{3} L_{\odot}$ [4 π D² MJy nsec GHz]
- electric field: $\leq 2 \times 10^{12}$ G [4 π D / ns $\sqrt{(MJy GHz / c^3)}$]
- charge: ≤ 5 Mole e [4 π D ns $\sqrt{(MJy GHz c)}$]
- e^{\pm} energy: $\leq 15 \text{ PeV}$ [4 π D e $\sqrt{(MJy GHz / c)}$]

Crab Pulsar Magnetosphere Numerology

- particle density: ~0.004 mole/m³
- plasma frequency: 250 GHz at surface
- nanoshot questions: small size? large charge? hi v?

Schwinger Pair Production

• $E_{lim} \cong E_{nanoshot}$

Schwinger Sparks

1⁺D simulation (Stebbins & Yoo 2015)

Schwinger Spark Spectrum

Other source of IR/O/UV follow-on emission?

BIG QUESTIONS

- Is there **nanosecond astronomy**?
 - surprisingly **YES** at least in one environment in radio.
- Is there nanosecond IR/O/UV astronomy?
 - **POSSIBLY** we should look and see!
- Is there microsecond IR/O/UV astronomy?
 - LIKELY Giant Radio Pulse associated photons have µsec structures.
- What other short timescale phenomena are there?

ANSWERS

- Very short timescale astronomy is photon starved!
- Instrument very large telescopes (e.g. TMT) with high time resolution (single pixel) camera.
- low cost instruments with limited number of targets
- very unexplored phenomena space

SUMMARY

- Large telescopes can resolve extremely small structures, temporally
 - need a large "light bucket" to capture small number of photons in small time intervals
- The brightest emission yet seen are "nanoshots" emitted from some pulsars
 - pulses observed at 1-10GHz some emitting $\sim 10^{30}$ erg in longer than 1 nsec
- Coherent emission by synchronized motion of $\sim 10^{23} e^{\pm}$ in very small volume
 - origin of synchronized motion unclear (propose vacuum pair production plays a role)
 - coherence decreases at higher frequencies so likely IR/O/UV emission likely faint
 - correlated optical emission has already been detected
- Temporal structure of IR/O/UV auto and cross w/ radio good diagnostic.
 - IR/O/UV could probe truly microscopic scale EM structure!
- Fast Radio Bursts ...

Schwinger Model of FRBs

- Are FRBs millions Schwinger Sparks going off in a few msec?
- "Blitzar" ~ literally "lightning star"

Credit: NASA/AEI/ZIB/M. Koppitz and L. Rezzolla