/IT-ALMA synergy for high-z galaxie

Scott Chapman (Dalhous

en ure me guiuxy components ussembleu?)

Big Bang ... Cosmic Microwave Background Galaxy Formation and Evolution ... Fossil Records today

mm/Far-IR is a superb probe of forming galaxies al Galaxies (like Andromeda) are ideal laboratory to study

Space/IR and ALMA

(TMT capabilities are shown in red)

TMT/MIRES will have comparable spectral line sensitivity (NELF) to frared space missions with a much higher spectral resolution

The angular resolution of TMT ins nicely complements that of JWST and ALMA

TMT is a "near IR A

		-			_	
		FIR – submm- mm - cm			Optical – NIR – mid I	
		ALMA			ТМТ	
ength nt)		315 μm – 3529 μm			0.3 μm – 2.5 μm	
eventual)		187 μm – 9677 μm			0.3 μm – 28 μm	
ar Resolution		8 mas * λ /400 μ m * 10 km / B _{char}			8.3 mas * λ/1μm	
al Resolution		$R = 3191 - 2.7 \times 10^7$			$R = 10 - 10^5$	
	ALMA		IRIS (0.8-2.5 μm) NFIRAOS	WFOS (0.3-1 μm) Seeing-limited		IRMS (0.8-2.5 μn NFIRAOS
view	6"-74" + mosaics		3" (IFU) 17" (imaging)	40 sqarcmin>500" slits		2' (46 slits)
l ion	31912.7e7		>3500 5-100 (imaging)	1000-5000 >7500 @0.75"		4660 @0.1 slits

r Forming Galaxies can be very optically not be the most luminous galaxies in the Unitial states in the Uni

ALMA ideal to find them TMT will help understand them

Arp 220 Flux Density v. Redshift

=150mJy / 5x lensing = 30 mJy ; R_AB>27, H_AB>2 most luminous galaxy in the Universe?

odeling: Hezaveh et al. 2012, ApJ

odel ALMA U-V plane data with a custom and statistically robust technique

348 is the most intrinsically luminous SPT-SMG

15

10

Z

- Photo-z analysis of 99 MAIN SMGs
- 78/96 (80%) detected >4 filters (av. 14)
- 9 detected in 2-3 filters (stacked SED uggests z~2.5)
- 9 detected in 1/0 filters (but some in FIR) rms dz/(1+z)=0.06 for 23 spec-z
- Median <z>=2.4+/-0.1

as Chapman+2005 samples have higher <z> T can help to understand s size/redshift evolution.

n Smolcic+12 survey has ources at z=2, and <z>=3 Il long wavelength bias?

m Vieira+13 survey has <z>=3.5 ng wave bias + lens bias?

ormous progress has been done observing rest-frame opt spectra + 2-D kinematics using Keck, LRIS and OSIRIS.

S: rest optical properties of high-z galaxies; 2' FOV, 2.4" s WFOS: 20', multiple targets ALMA [CII] observations *resolve* kinematics of primordial galaxies

 $\left(\right)$

6 kpc

"typical" star forming galaxy at Rieche

10 kpc

LBG

LBG-BG-1

Transford and materials and black in a seclering a

Cyc I – IRGs d in CO at I in 10-30 er target.

samples one now

- Molecular gas— critical for understanding the SFRD evolution disk assembly.
- CO Redshift surveys still hard even with ALMA
- "efficient" ISM mass using dust measurements -- large ALMA bandwidth.

bly well studied Keck field (HSI549+19) – 283 spec-z members at z=2.85

Steidel

3rd brightest CO line in cluste ... Previously uncatalogued go optically invisible (near-IR det

- 1T, ALMA and JWST will be extremely powerful and nergistic leading to transformational science in all areas crophysics.
- 1T and ALMA will provide extremely high angular reso ta ~ 10 mas!
- e depth of TMT and ALMA will allow us to probe new rameter space: higher sensitivity \rightarrow fainter, more distantion jects in a reasonable amount of time.
- 1T \rightarrow Near to mid-IR complementary to ALMA
- ombination of the distribution of star light, dust and gas nematics will address a vast range of astrophysics quest

FIN