

The Dark Energy Survey: Some Lessons learned

Matias Carrasco Kind Senior Research Scientist, NCSA/UIUC Data Release Scientist, DES

> AstroData2020s Science Workshop, Caltech Dec 4th, 2018

The Dark Energy Survey 🏼 🏈

Ι

- 4 meters telescope, 520 Mpx camera
- 5 year survey, ¹/₈ of the sky, Telescope in Chile, data @ NCSA, about to start 6th season
- Main Goal: To constrain the models of the Universe regarding Dark Energy and Dark Matter.
- Many other Science Cases! (New dwarf planet, New galaxy satellites, Supernovae, etc)
- 1 3 TB of data per night, 1 PB of data
- Processing done at FermiGrid, Campus Cluster and Blue Waters
- Thousands of images and billions of rows, ~500 millions objects
- 1st Public Data Release in January 2018
- NCSA provide means to access and interact with data \rightarrow Containers

The DES Data Access

Challenges:

Ι

- Data access wasn't very clear in original proposal
- People
- Time
- Collaborations Needs
- All the rest of technical challenges

- DES Survey: Gold (Data) Mine
- DESDM: Excellent job at mining the data
- Consumers outside the mine
- Need to bring/expose gold (data) outside
- Tools and interfaces
- DES DR1 is out!

The DES Science

DES is designed to improve our understanding of **cosmic acceleration** and the **nature of dark energy** using four complementary probes of the expansion history and growth of cosmic structure

... and like other cosmic surveys, the DES data enable a wide range of additional science ranging from the Solar System to the high-redshift Universe

See also The Dark Energy Survey: more than dark energy - an overview <u>DES Collaboration, arXiv:1601.00329</u>

The DES Survey

Dark Energy Survey (DES)

Wide-field Survey: 5000 deg², 10 visits in each of grizYTarget S/N = 10 coadd depth ~24 mag Supernova Survey: 27 deg², observed at weekly cadence Dark Energy Camera (DECam) (Flaugher, B. et al. 2015) 570 Mpix camera on Blanco 4-m telescope at CTIO 3 deg² field of view, 62 science CCDs

π

The Dark Energy Survey Collaboration 🏈

Т

The Dark Energy Survey

DES vision circa 2005

arXiv:astro-ph/0510346

Brenna Flaugher for the Dark Energy Survey Collaboration*

> Fermilab M.S. 310, Box 500 Batavia, IL 60510,USA

Dark Energy is the dominant constituent of the universe and we have little understanding of it. We describe a new project aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of $\sim 5\%$, with four separate techniques. The survey will image 5000 deg² in the southern sky and collect 300 million galaxies, 30,000 galaxy clusters, and 2000 Type Ia supernovae. The survey will be carried out using a new 3 deg² mosaic camera mounted at the prime focus of the 4m Blanco telescope at CTIO.

Keywords: Dark energy ; galaxies; supernovae.

DES DR1 Summary Statistics

)[

Parameter	Value
Observations (3 years of operations)	345 distinct nights from Aug 2013 to Feb 2016
Number of DECam Exposures	~39,000
Sky Coverage in <i>grizY</i>	5186 deg ²
Delivered Seeing (FWHM)	g = 1.21, r = 0.96, i = 0.88, z = 0.84, Y = 0.90 arcsec
Coadd Astrometric Precision (vs Gaia)	151 mas
Coadd Photometric Precision	<1% in <i>grizY</i>
Coadd depth (S/N = 10 in 1.95" Aperture)	g = 24.3, r = 24.1, i = 23.4, z = 22.7, Y = 21.4 mag
Distinct Coadd Objects in 10,338 tiles	~400M: ~310M galaxies and ~80M stars after basic quality cuts ~ 35,000 clusters @ z~1

Largest photometric dataset to date at the achieved depth and photometric precision

DES Data Releases

זנ

2012	2013	2014	2015	2016	2017	2018	2019	2020
ations	\rightarrow \leftarrow	\rightarrow \leftarrow	$\rightarrow \leftarrow$	$\rightarrow \leftarrow$	$\rightarrow \leftarrow$	\rightarrow	>	
S Observe	V Y	1 \	′2 Y	3 Y	4 Y	5 Y	6	
DESDM Releases	SVA1	Y1A1 •	Y2Q1	Y3A1 ●	Y3A2 🔴		Y5A1● Y6A1●	
Science Releases	SV Gold 1.0 🗡	SV Gold 1.0.2 🗡	SV Gold 1.0.4★ Y1 Gold 1.0.1★	Y1 Gold 1.0.3 ¥	Y3 Gold 1.0 🗡	Y3 Gold 2.0 ★ Y3 Gold 2.2 ★		
Public Releases				SV Gold		DR1	Y3 Gold	0R2 =

The DES Science

DES Data Management

Home

Τ

DES Y1 RELEASE

Releases 🗸

Get Help

Acknowledgements

About Us

This page presents the release of the DES Year 1 (Y1) data products. For a detailed description and list of available files of this release please see the links below. Users may also consider using the <u>DES DR1</u> based on three years of survey operations for improved astrometric accuracy and precision.

The DES Science

זנ

Home

Releases ~

Get Help

Acknowledgements About Us

Main Category	Product	Documentation	Filename(s)	Reference
Y1A1 Gold	Gold Catalog	Y1A1 Gold Data	Link	Drlica-Wagner et al. (2018)
Y1A1 Gold	Morphological Catalog	Morphological Catalogs	Link	Tarsitano et al. (2018)
Y1A1 Gold	Star/Galaxy Separation	Star-Galaxy Separation	Link	Sevilla-Noarbe et al. (2018)
Y1A1 Gold	Footprint/Mask	Footprint/Depth	Link	Drlica-Wagner et al. (2018)
Y1A1 Gold	Observing Conditions	Observing Conditions	Link	Drlica-Wagner et al. (2018)
Y1KP catalogs	Multi-Object-Fitting Photometry	Link	Link	Drlica-Wagner et al. (2018)
Y1KP catalogs	Shape Catalogs	Link	Link	Zuntz & Sheldon et al. (2018)
Y1KP catalogs	PSF Catalog	Link	Link	Zuntz & Sheldon et al. (2018)
Y1KP catalogs	redMaPPer Catalogs	To be released	To be released	McClintock & Varga et al. (2018)
Y1KP catalogs	redMaGiC Catalogs	Link	Link	Elvin-Poole et al. (2018)
Y1KP catalogs	Photometric Redshift Catalog	Link	Link	Hoyle & Gruen et al. (2018)
Y1A1 Key Project	Data Vectors	Link	Link	DES Collaboration (2018)
Y1A1 Key Project	Redshift Distributions in Tomographic Bins	Link	Link	DES Collaboration (2018)
Y1A1 Key Project	Likelihoods/Chains	Link	Link	DES Collaboration (2018)
Y1A1 Key Project	Mass Maps	Link	Link	Chang et al. (2018)
Y1A1 BAO	Catalogs, Footprint, and Redshift Distributions	Link	Link	Crocce et al. (2018)
Y1A1 BAO	Consensus Likelihood from BAO measurement	Link	Link	DES Collaboration (2017)
Y1A1 BAO	Angular Correlation Function	Link	Link	DES Collaboration (2017)
Y1A1 BAO	Angular Power Spectrum	To be released	To be released	Camacho et al. (2018)
Y1A1 BAO	3D Clustering	Link	Link	DES Collaboration (2017)
Y1A1 BAO	Mock Catalogs	Link	Link	Avila et al. (2018)
Y1 Density Split Stats	Data Vectors	Link	Link	Gruen et al. (2018)
Y1 Density Split Stats	Covariance	Link	Link	<u>Gruen et al. (2018)</u>
Y1 Density Split Stats	Redshift Distributions	Link	Link	Hoyle & Gruen et al. (2018)

The DES Science: Y1 Results

Т

This is where we are with Y1* and no clusters.

We are already a factor of three better than the next best experiment (Planck) at constraining w.

The DES Science: The DES Science: Y1 Results

Ι

This is the time we can really achieve precision cosmology, maybe even break LCDM

Study case

זנ

The photo-z paradigm: SV

)[

Photometric redshift analysis in the Dark Energy Survey Science Verification data

C. Sánchez^{1*}, M. Carrasco Kind², H. Lin³, R. Miquel^{1,4}, F. B. Abdalla⁵,
A. Amara⁶, M. Banerji⁵, C. Bonnett¹, R. Brunner², D. Capozzi⁷, A. Carnero^{8,9},
F. J. Castander¹⁰, L. A. N. da Costa^{8,9}, C. Cunha¹¹, A. Fausti⁹, D. Gerdes¹²,
N. Greisel^{13,14}, J. Gschwend^{8,9}, W. Hartley^{6,15}, S. Jouvel⁵, O. Lahav⁵, M. Lima^{16,9},
M. A. G. Maia^{8,9}, P. Martí¹, R. L. C. Ogando^{8,9}, F. Ostrovski^{8,9}, P. Pellegrini⁸,
M. M. Rau^{13,14}, I. Sadeh⁵, S. Seitz^{13,14}, I. Sevilla-Noarbe¹⁷, A. Sypniewski¹²,
J. de Vicente¹⁷, T. Abbot¹⁸, S. S. Allam^{19,3}, D. Atlee²⁰, G. Bernstein²¹,
J. P. Bernstein²², E. Buckley-Geer³, D. Burke^{23,11}, M. J. Childress^{24,25},
T. Davis^{26,25}, D. L. DePoy²⁷, A. Dey^{20,28}, S. Desai^{29,30}, H. T. Diehl³, P. Doel⁵,
J. Estrada³, A. Evrard^{12,31,32}, E. Fernández¹, D. Finley³, B. Flaugher³,
J. Frieman³, E. Gaztanaga¹⁰, K. Glazebrook³³, K. Honscheid³⁴, A. Kim³⁵,
K. Kuehn³⁶, N. Kuropatkin³, C. Lidman³⁶, M. Makler³⁷, J. L. Marshall²⁷,
R. C. Nichol⁷, A. Roodman^{23,11}, E. Sánchez¹⁷, B. X. Santiago^{38,9}, M. Sako²¹,
R. Scalzo²⁴, R. C. Smith¹⁸, M. E. C. Swanson³⁹, G. Tarle¹², D. Thomas^{7,40},
D. L. Tucker³, S. A. Uddin^{33,25}, F. Valdés²⁰, A. Walker¹⁸, F. Yuan^{24,25}, J. Zuntz⁴¹

The photo-z paradigm: SV

Redshift distributions of galaxies in the DES Science Verification shear catalogue and implications for weak lensing

[astro-ph.CO] 23 Jul 2015

Τ

C. Bonnett¹, M. A. Troxel², W. Hartley³, A. Amara³, B. Leistedt⁴, M. R. Becker^{5,6}, G. M. Bernstein⁷, S. L. Bridle², C. Bruderer³, M. T. Busha⁵, M. Carrasco Kind^{9,10}, M. J. Childress⁴⁸ F. J. Castander¹¹, C. Chang³, M. Crocce¹¹, T. M. Davis⁴⁷, T. F. Eifler^{7,12}, J. Frieman^{13,14}. C. Gangkofner^{51,52}, E. Gaztanaga¹¹, K. Glazebrook⁴⁹, D. Gruen^{33,35}, T. Kacprzak³, A. King⁸ J. Kwan¹⁵, O. Lahav⁴, G. Lewis⁴⁶, C. Lidman¹⁶, H. Lin¹³, N. MacCrann², R. Miquel^{1,17} C. R. O'Neill⁴⁷, A. Palmese⁴, H.V. Peiris⁴, A. Refregier³, E. Rozo¹⁸, E. S. Rykoff^{6,19}. I. Sadeh⁴, C. Sánchez¹, E. Sheldon⁵¹, S. Uddin²⁰, R. H. Wechsler^{5,6,19}, J. Zuntz², T. Abbott²¹. F. B. Abdalla⁴, S. Allam¹³, R. Armstrong²², M. Banerji^{23,24}, A. H. Bauer¹¹, A. Benoit-Lévy⁴ E. Bertin^{25,26}, D. Brooks⁴, E. Buckley-Geer¹³, D. L. Burke^{6,19}, D. Capozzi²⁷, A. Carnero Rosell^{28,29} J. Carretero^{1,11}, C. E. Cunha⁶, C. B. D'Andrea²⁷, L. N. da Costa^{28,29}, D. L. DePoy³⁰, S. Desai^{31,32}. H. T. Diehl¹³, J. P. Dietrich^{32,33}, P. Doel⁴, A. Fausti Neto²⁸, E. Fernandez¹, B. Flaugher¹³. P. Fosalba¹¹, D. W. Gerdes³⁴, R. A. Gruendl^{9,10}, K. Honscheid^{36,37}, B. Jain⁷, D. J. James²¹ M. Jarvis⁷, A. G. Kim³⁸, K. Kuehn¹⁶, N. Kuropatkin¹³, T. S. Li³⁰, M. Lima^{45,28}, M. A. G. Maia^{28,29} M. March⁷, J. L. Marshall³⁰, P. Martini^{36,39}, P. Melchior^{36,37}, C. J. Miller^{34,40}, E. Neilsen¹³. R. C. Nichol²⁷, B. Nord¹³, R. Ogando^{28,29}, A. A. Plazas¹², K. Reil¹⁹, A. K. Romer⁴¹, A. Roodman^{6,19}. M. Sako⁷, E. Sanchez⁴², B. Santiago^{28,43}, R. C. Smith²¹, M. Soares-Santos¹³, F. Sobreira^{13,28}, E. Suchyta^{36,37}, M. E. C. Swanson¹⁰, G. Tarle³⁴, J. Thaler⁴⁴, D. Thomas²⁷, V. Vikram¹⁵, A. R. Walker²¹

(The DES Collaboration)

The photo-z paradigm: Y1

Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

B. Hovle^{1,2*}, D. Gruen^{3,4†}, G. M. Bernstein⁵, M. M. Rau¹, J. De Vicente⁶, W. G. Hartlev^{7,8}, E. Gaztanaga⁹, J. DeRose^{10,3}, M. A. Troxel^{11,12}, C. Davis³, A. Alarcon⁹, N. MacCrann^{11,12}, J. Prat¹³, C. Sánchez¹³, E. Sheldon¹⁴, R. H. Wechsler^{10,3,4}, J. Asorey^{15,16}, M. R. Becker^{10,3}, C. Bonnett¹³, A. Carnero Rosell^{17,18}, D. Carollo^{15,19}, M. Car- M. II. Weinstein T. J., Sabery J. M. Becker, N. Douhlett, A. Cathelo Hosen, D. Cathelo Tosen, J. Cathelo T. S. Cathelo P. S. Castander, R. Cawthon 22, C. Chang22, M. Childress²³, T. M. Davis^{15,16}, A. Drica-Wagner²⁴, M. Gatti¹³, K. Glazebrook²⁵, J. Gschwend^{17,18}, S. R. Hinton¹⁶, J. K. Hoormann¹⁶, A. G. Kim²⁶, A. King¹⁶, K. Kuehn²⁷, G. Lewis^{15,28}, C. Lidman^{15,27}, H. Lin²⁴, E. Macaulay¹⁶, M. A. G. Maia^{17,18}, P. Martini^{11,29}, D. Mudd²⁹ A. M"oller^{15,30}, R. C. Nichol³¹, R. L. C. Ogando^{17,18}, R. P. Rollins³², A. Roodman^{3,4}, A. J. Ross¹¹, E. Rozo³³ E. S. Rykoff^{3,4}, S. Samuroff³², I. Sevilla-Noarbe⁶, R. Sharp³⁰, N. E. Sommer^{15,30}, B. E. Tucker^{15,30}, S. A. Uddin^{15,34}. T. N. Varga^{2,1}, P. Vielzeuf¹³, F. Yuan^{15,30}, B. Zhang^{15,30}, T. M. C. Abbott³⁵, F. B. Abdalla^{7,36}, S. Allam²⁴, J. Annis²⁴, K. Bechtol³⁷, A. Benoit-Lévy^{38,7,39}, E. Bertin^{38,39}, D. Brooks⁷, E. Buckley-Geer²⁴, D. L. Burke^{3,4} J. Amins , R. Bechloff , A. Behloff-Devy P. B. Derom , D. Dronos, E. Buckg-Gott, B. D. Durk, G. M. T. Busha³, D. Capozzi³¹, J. Carretero¹³, M. Crocce⁹, C. B. D'Andrea⁵, L. N. da Costa^{17,18}, D. L. DePoy⁴⁰, S. Desa¹⁴, H. T. Diehl²⁴, P. Deol⁷, T. F. Eifler^{42,43}, J. Estrada²⁴, A. E. Evrard^{44,45}, E. Fernandez¹³, B. Flaugher²⁴, P. Fosalba⁹, J. Frieman^{24,22}, J. García-Bellido⁴⁶, D. W. Gerdes^{44,45}, T. Giannantonio^{47,48,1}, D. A. Goldstein^{49,26}, R. A. Gruendl^{20,21}, G. Gutierrez²⁴, K. Honscheid^{11,12}, D. J. James⁵⁰, M. Jarvis⁵, T. Jeltema⁵¹, M. W. G. Johnson²¹, M. W. G. Johnso⁴¹, M. W. G. Johnson²¹, M. W. G. Johns M. D. Johnson²¹, D. Kirk⁷, E. Krause³, S. Kuhlmann⁵², N. Kuropatkin²⁴, O. Lahav⁷, T. S. Li²⁴, M. Lima^{53,17} M. March⁵, J. L. Markall⁴⁰, P. Melchior⁵⁴, F. Menanteau^{20,21}, R. Miquel^{55,13}, B. Nord²⁴, C. R. O'Neill^{15,16},
 A. A. Plazas⁴³, A. K. Romer⁵⁶, M. Sako⁵, E. Sanchez⁶, B. Santiago^{57,17}, V. Scarpine²⁴, R. Schindler⁴, M. Schubnell⁴⁵,
 M. Smith²³, R. C. Smith³⁵, M. Soares-Santos²⁴, F. Sobreira^{58,17}, E. Suchyta⁵⁹, M. E. C. Swanson²¹, G. Tarle⁴⁵, D. Thomas³¹, D. L. Tucker²⁴, V. Vikram⁵², A. R. Walker³⁵, J. Weller^{60,2,1}, W. Wester²⁴, R. C. Wolf⁵, B. Yanny²⁴ J. Zuntz⁶¹

(DES Collaboration)

17

Ι

The photo-z paradigm: Y3

• Photo-z is complex

Т

- Heterogeneous sample of spec-z ar terrible for ML methods
- Emission lines are terrible for template methods
- New techniques being developed
- Hybrid methods

Compression: Photo-z PDF

Sparse Representation of Photometric Redshift PDFs: Preparing for Petascale Astronomy

Matias Carrasco Kind^{*} and Robert J. Brunner Department of Astronomy, University of Illinois, Urbana, IL 61820 USA

11 June 2018

Ι

Sparse representation of photo-z PDFs 9

Compression: Galaxy selection and similarity search

Τ

Galaxy selection and similarity search

)[

21

Matias Carrasco Kind -- Running Notes

Learn from one survey to another

Knowledge transfer of Deep Learning for galaxy morphology from one survey to another

Ι

H. Domínguez Sánchez^{1*}, M. Huertas-Company ^{1,2,3}, M. Bernardi ¹, S. Kaviraj⁴, J.L. Fischer¹,
T. M. C. Abbott⁵, F. B. Abdalla^{6,7}, J. Annis⁸, S. Avila⁹, D. Brooks⁶, E. Buckley-Geer⁸,
A. Carnero Rosell^{10,11}, M. Carrasco Kind^{12,13}, J. Carretero¹⁴, C. E. Cunha¹⁵, C. B. D'Andrea¹,
L. N. da Costa^{10,11}, C. Davis¹⁵, J. De Vicente¹⁶, P. Doel⁶, A. E. Evrard^{17,18}, P. Fosalba^{19,20},
J. Frieman^{8,21}, J. García-Bellido²², E. Gaztanaga^{19,20}, D. W. Gerdes^{17,18}, D. Gruen^{15,23},
R. A. Gruendl^{12,13}, J. Gschwend^{10,11}, G. Gutierrez⁸, W. G. Hartley^{6,24}, D. L. Hollowood²⁵,
K. Honscheid^{26,27}, B. Hoyle^{28,29}, D. J. James³⁰, K. Kuehn³¹, N. Kuropatkin⁸, O. Lahav⁶,
M. A. G. Maia^{10,11}, M. March¹, P. Melchior³², F. Menanteau^{12,13}, R. Miquel^{14,33}, B. Nord⁸,
A. A. Plazas³⁴, E. Sanchez¹⁶, V. Scarpine⁸, R. Schindler²³, M. Schubnell¹⁸, M. Smith³⁵, R. C. Smith⁵,
M. Soares-Santos³⁶, F. Sobreira^{37,10}, E. Suchyta³⁹, M. E. C. Swanson¹³, G. Tarle¹⁸, D. Thomas⁹,
A. R. Walker⁵, and J. Zuntz⁴⁰

SDSS (GalaxyZoo) transfer learning to DES images for morphological classification

Create realistic samplings of galaxy images with prior (DES)

Τ

angle

eccentricity

brightness

angle

eccentricity

brightness

Bowen, Carrasco-Kind, et al. in prep.

Create realistic samplings of galaxy images with no prior (DES)

זנ

Bowen, Carrasco-Kind, et al. in prep.

Create realistic samplings of galaxy images with no prior

)[

If I were to write a WP today

Ι

- Make our big data problem bigger
 - Unified all galaxy photometry/spectroscopy, this time for real in centralized place.
 - Leverage Big Data solutions to analyze the huge amount of data and exhaust all possible information. → ML and SED consumers
 - And yes, dont forget images as well !
 - Photo-z, LSS, Clusters, Galaxy formation and evolution.
 - Peter's 'Standard Model' for galaxies

Thank you!

Ι

Questions?

Matias Carrasco Kind -- NCSA <u>mcarras2@illinois.edu</u> <u>github.com/mgkind</u> <u>matias-ck.com</u>