Spectroscopic Data
Manitold Learning fo

nases and

r Surveys of

the 2020s

Dan Masters

Jet Propulsion Laboratory, California Institute of Technology

December 6, 2018

Jet Propulsion Laboratory

X 13 California Institute of Technology

(© 2018.California Institute of Technology.
Government sponsarship acknowledged.




Rapidly accelerating expansion into the future

Breakthrough from the 1990s:
Accelerating cosmic expansion

2011 Nobel Prize in Physics

Accelerated expansion
assoclated with dark energy
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The Redshift Measurement Problem

* Billions of galaxies will be imaged by the Stage IV cosmology
surveys (LSST, Euclid, WFIRST)

* Only possible to get spectroscopic redshifts for a small fraction

* Weak lensing cosmology requires that the redshift distributions
of galaxies in ~10-20 redshifts bins be known with high accuracy

- Photometric redshifts will necessarily be crucial for
weak lensing cosmology missions



Manifold learning / nonlinear dimensionality
reduction (NLDR)

* Group of techniques to characterize / explore high-dimensional data
and correlations in high dimensions

« Common ones includes the self-organizing map (SOM), t-SNE, local
linear embedding (LLE), and UMap

* Most project the high-D manifold down to a lower-D representation

* Whereas deep convolution networks try to learn a complex high-
dimensional relationship between input data and output labels, NLDR
just tries to unwrap the high-D data in an unsupervised way — no

outputs



Self-organized map of galaxy colors to Euclid depth
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The galaxy color manifold
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Figure 5. LSST and WFIRST colors of the trained SOM at each cell from top-left to bottom-right color-coded by: ursst—8gLssT, 8LsST —

rLSST, TLSST — ILSST, ILSST — ZLSST, ZLSST — YWFIRST: YWFIRST — JWFIRST: JWFIRST — Hwrirst, and Hwpirst — F184WwpirgT-
SOM is selected to be a mesh of 80 x 60 cells. The axes are arbitrary and each position on the two dimensional map points to a position

in the 8 dimensional color space. .
Hemmati et al. 2018



Other techniques — UMap
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C3R2 = Complete Calibration of the Color-Redshift Relation

Judith Cohen (Caltech) - Pl of Caltech Keck C3R2 allocation
16 nights (DEIMOS + LRIS + MOSFIRE, kicked off program in 2016A)
Daniel Stern (JPL) - Pl of NASA Keck C3R2 allocation
10 nights (all DEIMOS; “Key Strategic Mission Support”)
Daniel Masters (JPL) — Pl of NASA Keck C3R2 allocation 2018A/B. Observed last night, and
will again tonight
10 nights (5 each LRIS/MOSFIRE; “Key Strategic Mission Support”)
Dave Sanders (IfA) - Pl of Univ. of Hawaii Keck C3R2 allocation
6 nights (all DEIMOS) + H20
Bahram Mobasher (UC-Riverside) - Pl of UC Keck C3R2 allocation
2.5 nights (all DEIMQS)

+ time allocations on VLT (PI F. Castander), MMT (PI D. Eisenstein), and GTC (PI C. Guitierrez)
-Sample drawn from 6 fields totaling ~6 deg?

Additional Collaborators: Peter Capak, S. Adam Stanford, Nina Hernitschek, Francisco Castander, Sotiria
Fotopoulou, Audrey Galametz, lary Davidzon, Stephane Paltani, Jason Rhodes, Alessandro Rettura, Istvan
Szapudi, and the Euclid Organization Unit — Photometric Redshifts (OU-PHZ) team
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C3R2-Keck stats through DR2 (2016A-2017A)
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C3R2 — Results from SOM method
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Remarkably stable relationship of dmag/dz at

fixed color
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Flux (abitrary unit)

Ambiguous redshifts
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Color coverage to Euclid depth
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* Much of the galaxy color space explored to significant depth (>75% of cells; >85% of galaxies in
cell with at least 1 specz, many cells with >>1 specz); some cells remain uncalibrated at present.

* C3R2-Keck alone covering >35% of the color space



Spectroscopic Databases — challenges

* We will have hundreds of thousands of deep galaxy spectra in the
2020s, growing continuously

* Need a database that can easily ingest new spectroscopy from
disparate sources (e.g., from grisms)

* Extremely careful vetting of spec-zs necessary for cosmology
* Machine learning-based redshifts may prove critical

All large cosmology surveys would benefit from a single high-quality
database of all deep spectroscopy!



A start for Euclid in Geneva

The database — Case example / Read-only

Back to search page o
All Survey:
Survey Id z Flag Comment Method User Date

. Global 0.6261 4 Copied from survey 2017-09-14
Spectroscopy from Magellan_IMACS_Sp: py_UDS survey.
1d="UDS1.111". Postition RA=34.2758791667" DEC=-5.21815277778° £ 8

= Flag Comment Method User Date -
0.6261 4 Copied from survey 2017-09-14
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Survey d Filter Type Flux Error
| CaR2:8XDS (PHOTO) 177405 SXDS -u APERTURE 23.006199935913 0.0136871
| C3R2:SXDS (PHOTO) 177405 SXDS - g APERTURE 22.491500747681 0.00430243
C3R2:SXDS (PHOTO) 177405 SXDS - r APERTURE 22.249899353027 0.00788602
C3R2:8XDS (PHOTO) 177405 SXDS - i APERTURE 22.047600753784 0.00788602
| C3R2:8XDS (PHOTO) 177405 SXDS -z APERTURE 21.75049987793 0.012257
| C3R2:8XDS (PHOTO) 177405 SXDS -y APERTURE 21.428590136353 0.0158403



Galaxies are not unique

* The manifold of galaxy observables is finite, and large surveys like
Euclid/WFIRST/LSST will measure essentially the same galaxy over and
over

* We can measure the galaxy manifold really well with large surveys.

e Continuity constraints could then allow us to build a dynamic picture
of galaxy growth
»Individual galaxies can be thought of as moving along the manifold.

 What could we learn from this?



Models — can we match them to the data?
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Measure the high-dimensional manifold.
Then what?

* We have a well-defined target for simulations

* What if we find (as is common) that the simulations produce
unphysical galaxies, or can’t produce certain real galaxies?

* Is there a way to systematically search for the simulation parameters
that produce the observed universe?

* What have we learned about galaxies at the end?
* How do we achieve the “Standard Model”?



