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Time	series	in	antiquity

•Who?
Babylonian	Astronomical	Diary

• What?
The	comet	which	previously	had	
appeared	in	the	east	in	the	path	of	Anu in	
the	area	of	Pleiades and	Taurus

• Where?
to	the	west	[…]	and	passed	along	in	the	
path	of	Ea in	the	region	of	Sagittarius,	1	
cubit	in	front	of	Jupiter,	3	cubits	high	
toward	the	north	[…]	

• When?
Month	VIII,	SE	148	(lunar	month	beg.	21	
October	164	BC)

• How?
By	eye

• Why?
Celestial	divination
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The	first	astronomical	time	series

Image	credit:	University	of	Michigan	
Special	Collections	Library

Thomas	Harriott:	Dec	1610
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The	burgeoning	time	domain

l Palomar-Quest	Synoptic	Sky	Survey
l SDSS	(Stripe	82)
l Catalina	Real-time	Transient	Survey
l Palomar Transient	Factory
l Zwicky	Transient	Factory
l Pan-STARRs
l SkyMapper
l ASKAP
l ThunderKat (MeerKAT)
l KEPLER
l GAIA
l LIGO
l IceCUBE
l LOFAR
l LSST
l SKA
l TESS
l ASAS-SN
l MASTER
l DES
l ATLAS
l BlackGEM
…
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Catalina	Real-time	Transient	Survey	(2005-)
l Collaborative	survey	with	Catalina	Sky	Survey	(LPL,	UA)
l Unfiltered	observations	21	nights/lunation	covering	up	to	2000	deg2/night	
l Covers	33000	sq.	deg.	(0	<		RA	<	360,	-75	<	Dec	<	70).
l Calibrated	photometry	for	500	million	objects	(>	100	billion	data	points)
l Depth	V	=	19	to	21.5
l 100	– 600	observations	in	most	regions	(median	~	320)	
l Temporal	baselines	of	10	min	to	~12	years
l More	published	SNe and	CVs	than	any	other	survey	(public	instantly)
l Open	data	policy	(http://catalinadata.org)
l ~3%	LSST	(2-5)



December 6, 2018Matthew J. Graham

6

Zwicky	Transient	Facility	(2017-)

l New	camera	on	Palomar	Oschin 48”	with	47	deg2 field	of	view
l 3750	deg2 /	hr to	20.5-21	mag	(1.4	TB	/	night)
l Full	northern	sky	every	three	nights	in	g	and	r
l Galactic	Plane	every	night	in	g	and	r
l Over	3	years:	3	PB,	750	billion	detections,	~1000	detections	/	source
l First	megaevent survey:	106 alerts	per	night	(public	since	June	2018)
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What	do	we	ask	of	time	series	data?

l Population	behaviors
- Characterize,	categorize,	classify

l Outliers
- Extreme	sources	

l Physical	models
- Predictions

Case	study:	quasar	variability
l First	quasar	identified	3C	48	– most	striking	feature	was	that	the	

optical	radiation	varied
l Physical	origin	of	photometric	variability	in	

optical/UV	is	unclear:
- Instabilities	in	the	accretion	disk
- Supernovae
- Microlensing
- Stellar	collisions
- Thermal	fluctuations	from	magnetic	turbulence

l Many	studies	based	on	small	sample	size	or	
(very)	sparse	time	sampling

l Complementary	to	SED	studies



December 6, 2018Matthew J. Graham

8

Characterization	– extracting	data	features
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Categorization	– clustering	the	data

A	2-D	topology	preserving	
representation	of	a	6-D	
parameter	space	for	20000	
characterized	time	series	
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Classification	– identifying	the	clusters
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Outliers	– the	things	that	do	not	fit
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Common	statistical	features

l Timescales:
- Lomb-Scargle

l Variability:
- von	Neumann	variability	(phase-folded)
- Stetson	K	index

l Morphology:
- Skewness
- Kurtosis
- IQR
- Cumulative	sum	index	(phase-folded)
- Ratio	of	magnitudes	brighter/fainter	than	mean

l Trends:	
- Slope	percentiles	(phase-folded)

l Model:
- Fourier	amplitude	ratios
- Fourier	phase	differences
- Fourier	amplitude
- Shapiro-Wilk normality	test
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Unstated	assumptions	

l Homoskedasticity
- All	errors	are	drawn	from	the	same	process	
(same	variance	model	for	all	data	points)

l Non-IID
- Data	is	sequential

l Stationarity
- The	generating	distribution	is	time	independent
- GRS	1915+215	has	~20	variability	states
- GARCH	models:	variance	is	a	stochastic	function	of	time
- Nonstationary time	series	do	not	have	to	stationary	
in	any	limit

l Ergodicity
- The	time	average	for	one	sequence	is	the	same	as	the	ensemble	average

- Observations	sufficiently	far	apart	in	time	are	uncorrelated	and	new	
observations	give	extra	information

(Huppenkothen et	al.	2016)
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Not	all	features	are	equal

Richards et al. 2011
Elorietta et al. 2016

D’Isanto et al. 2016

Dubath et al. 2012

Richards et al. 2012
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The	most	important	feature:	period

l Many	features	used	to	characterize	light	curves	rely	on	a	
derived	period:
- Dubath et	al.	(2011)	show	a	22%	misclassification	error	rate	for	non-
eclipsing	variable	stars	with	an	incorrect	period

- Richards	et	al.	(2011)	estimate	that	periodic	feature	routines	account	for	
75%	of	computing	time	used	in	feature	extraction

- Deep	learning	still	applied	to	folded	light	curves
l Domain	knowledge	constraints
- RR	Lyrae:	Blazho behavior	(30%),	small	amplitude	cycle-to-cycle	
modulations	(RRabs)

- Close	binaries,	LPVs:	cyclic	period	changes	over
multidecade baselines

- Semi-regular	variables:	double	periods,	
multiperiodicity

- ARMA	models:	quasi-periodicity
l Trustworthiness	of	quoted	periods
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Period	finding	is	not	a	single	algorithm

l Minimized	(least-squares)	fit	to	a	set	of	basis	functions:
l Lomb-Scargle and	its	variants
l Wavelets

l Minimize	dispersion	measure	in	phase	space:
l Means	(PDM)
l Variance	(AOV)
l String	length
l Entropy

l Rank	ordering	(in	phase	space)
l Bayesian
l Neural networks
l Gaussian	process	regression
l Convolved	algorithms
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What	can	we	say	about	period	finding

l No	algorithm	is	generally	better	than	~60%	accurate
l All	methods	are	dependent	on	the	quality	of	the	light	curve	and	show	a	
decline	in	period	recovery	with	lower	quality	light	curves	as	a	
consequence	of:

l fewer	observations
l fainter	magnitudes
l noisier	data	and	an	increase	in	period	recovery	with	higher	object	variability;

l All	algorithms	are	stable	with	a	minimum	bin	occupancy	of	~10	(Δϕ =	0.1)
l A bimodal	observing	strategy	consisting	of	pairs	(or	more)	of	short	Δt
observations	per	night	and	normal	repeat	visits	is	better

l The	algorithms	work	best	with	pulsating	and	eclipsing	variable	classes
l LS/GLS	are	strongly	effected	by	half-period	issue	(eclipsing	binaries)
l Specific	algorithms	work	better	with	irregular	sampling,	bright	
magnitudes	(containing	saturated	values),	or	with	performance	
constraints
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l ∆𝑚 > 𝑥
– DPOSS	vs.	SDSS	(Stripe	82)	vs.	PS1

l Excess	variability
l Structure	function
– Variability	amplitude	as	a	function	of	the	time	lag	between	compared	
observations

– Historic	descriptor	of	variability	and	a variety	of	estimators	
– Not	much	information	

18

Describing	quasar	photometric	variability
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l Characterized	by	variability	amplitude	and	timescale
l Basis	for	stochastic	models	of	variability
l Deviations	noted	(e.g.,	Mushotzky 2011,	
Zu et	al.	2013,	Graham	et	al.	2014)

l Degenerate	model	– can	be	best	fit	for	a	
non-DRW	process	(Kozlowski	2016)

19

Damped	random	walk
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DRW+	=	CARMA

l Better	model	is	continuous	time	autoregressive	moving	
average	(CARMA;	Kelly	et	al.	(2015),	Kasliwal et	al.	(2016))

d py(t)
dt p

+α p−1
d p−1y(t)
dt p−1

+...+α0y(t) = βq
dqε(t)
dtq

+βq−1
dq−1ε(t)
dtq−1

+...+ε(t)

TSNE (t-distributed stochastic neighbor embedding) plot of restframe
CARMA(3,2) parameters for 16498 AGN 
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Changing	state	quasars

l Characterized	by	a	smooth	slow	photometric	rise/decline	of	
~1	mag	over	several	years	and	some	degree	of	spectral	variability		
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Changing	state	quasars

10s	of	new	CSQs	(Graham	et	al.,	in	prep)



December 6, 2018Matthew J. Graham

l There	is	no	reason	why	the	characterized	variability	of	every	
type	of	astronomical	source	in	the	observable	universe	over	a	
decadal	baseline	should	be	Gaussian

l For	a	generic	heavy-tailed	distribution:

λ and	α	cannot	be	estimated	and	so	the	general	significance	
known
l There	is	no	formal	statistical	definition	for	an	outlier but	it	can	
be	shown	that	the	presence	of	outliers	has	no	connection	with	
the	existence	of	heavy	tails	of	an	underlying	
distribution	or	with	experimental	errors	
(Klebanov 2016)

23

Extremes:	heavy	tail	or	big	outlier

lim
x→∞

P[ X > x]x−α = λ
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Elements	of	a	21st century	approach
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l Current	statistical	models	of	variability	are	designed	to	
discriminate	between	classes,	e.g.	stars/galaxies	– p(y|x)

l Better	to	learn	time	series	(shape)	rather	than	determining	
some	parameterizable form	– p(y,	x)

l Generative	approach	that	supports	predictions

25

Generative	vs.	discriminative
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Gaussian	processes
𝑓 𝑥 	~	𝒢𝒫 𝝁, 𝑘 𝑥, 𝑥-
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DRW	=	CAR(1)	=	CARMA(1,0)	=	CARIMA(1,0,0)	=	CARFIMA(1,0,0)
l (Zero	mean)	Gaussian	processes	are	completely	defined	by	
their	covariance	function:

l No	closed	form	for	(super)parent	models
l Fractional	Brownian	motion	is	equivalent	to	CARFIMA	and	a	
Cauchy	class	separates	characterization	of	the	fractal	
dimension	(roughness)	and	long	range	dependence

𝐾 𝑥, 𝑥- = 𝜎J 1 + 𝜃 𝑥 − 𝑥- e >f

27

Better	Gaussian	process	kernels
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Optimal	representations

Bayesian	Blocks	(Scargle 2012)	representation	gives	an	optimal	
segmentationof the	data	in	terms	of	a	set	of	discontinuous	
piecewise	continuous	components
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Distances	between	time	series

• Consider	the	BB	representation	of	the	time	series	as	the	
flux	pdf	over	a	time	interval		

• The	p-Wasserstein	distance	for	1D	probability	measures:

𝑊h(𝜇, 𝜈) = k 𝐹m>? 𝑡 − 𝐹f>?(𝑡)
h𝑑𝑡

?

o

?
h

• For	BBs,	there	is	an	analytical	expression	for	W2
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l Use	eigenvectors/values	of	similarity	graph	to	define	features,	
parameterize	data,	perform	clustering/regression

l Use	a	pairwise	similarity	measure	constrained	to	local	
neighborhoods	between	time	series

l Limit	adjacency	matrix	to	k nearest	neighbors	and	solve

30

Spectral	embedding	of	time	series
with Tamas Budavari and Tom Loredo
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Combining	time	series
What	is	the	best	method	for	combining	(temporally	overlapping)	
data	from	different	passbands	and/or	surveys?

Expect	a	shift	in	magnitude/flux	and	potentially	in	time

Methods:
• Subtracting	the	means
• Minimizing	standard	deviation
• Minimizing	distance	to	nearest	neighbor	
• Minimizing	chi-squared	statistic
• Coregionalized regression

Simulate:
• Idealized	daily	observations:	minimizing	std
• Wide	Fast	Deep	(default	LSST	cadence):		NN
• Deep	Drilling	Fields:	NN

led	by	Rachel	Buttry and	Gordon	Richards	
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Dealing	with	uncertainties

l There	are	many	sources	of	uncertainty:
- Time	series	have	observation	errors	in	flux	(and	time)
- Regularization	and	imputation	add	interpolation	uncertainties
- Model	parameters	and	hyperparameters have	uncertainties

l Feature	representations	do	not	traditionally	deal	with	these	
(and	will	also	introduce	their	own	uncertainties)

l Probabilistic	classifications	tend	to	only	simulate	
effect	of	observation	errors	through	choice	of	
priors	or	parameter	space	coverage

l Ideally	full	PDF	should	be	given	for	each	classification
l Uncertainty	quantification	(UQ)	formally	considers	this:
- forward	uncertainty	propagation	(simulations	and	expansion	methods)
- inverse	uncertainty	quantification	(Bayesian)																																																																																
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Detecting	outliers

Some	images	from	http://proforhobo.com
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Going	deep

l Trendy,	good	for	funding	proposals
l Convolutional	neural	networks	(CNNs)	are	current	game	
changer	for	images

l Need	to	convert	time	series	to	image:	
- Wang	&	Oates	(2015),	Hatami (2017)
- Mahabal et	al.	(2017)	use	dm-dt mechanism	with	variable	stars
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Going	deeper

l Some	neural	networks	architectures	have	“memory”	-
connections	between	links	forming	directed	cycles,	e.g.,	RNNs,	
LSTMs,	good	for	time	series
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RNNs	with	QSOs	
with	Yutaro Tachibana
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Which	classifier?

l Most	individual	classifiers	will	give	broadly	the	same	results	
(precision	and	recall)	for	the	same	feature	set,	possibly	with	
slight	preferences	for	certain	classes

l The	state	of	the	art	is	random	forest	(although	see	also	support	
vector	machine,	Bayesian	networks	and	self-organizing	maps)

l Better	results	can	be	obtained	with	an	ensemble	classifier:																																																																		

Base-level data set D 

Feature vectors 

Meta-level data set MD 

C1...CN

C1( j)...CN ( j)

L1...LN

L1...LN

MDj

LM CM

Dj D \ Dj
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Class value y 

Test Train 
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Summary

l Traditional	time	series	analyses	in	astronomy	involve:
- (simple)	discriminative	features	as	(possible)	inputs	to	machine	learning	
algorithms

- outlier	detections	based	on	Gaussian	tails	
- little	predictive	power

l Data	volumes	now	mean	that	we	can	model individual sources:
- capturing	full	time	series	behavior
- better	identifying	extrema
- with	generative	approaches	

l Next	generation	surveys	enable	
real-time	validation	of	predicted
behaviors	and	swift	identification	of	
deviance


