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Gravitational Wave Astrophysics
Multi-Messenger Astrophysics

Outstanding theoretical and computational challenges in
Multi-Messenger Astrophysics

The rise of the Data Revolution

Convergence of the Data Revolution with
Multi-Messenger Astrophysics
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Consider the source
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Gravitational waves exist

Systems of two black holes form and collide within the age of the Universe

Einstein’s theory of general relativity 1s correct in the most extreme astrophysical environments

https://www.yvoutube.com/watch?v=RYWK26iklD


https://www.youtube.com/watch?v=RYWK26jklDg

Don't look at the
Dark Universe
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ISten to It!
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Masses in the Stellar Graveyard
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e Models and simulations

Scientific Discovery
(C) NCSA
LIGO Livingston Data Predicted

. Observations
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Routine: black hole and neutron star
collisions
a Future: supernovae, oscillating neutron
stars....




“For the greatest benefit to mankind”
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The Royal Swedish Academy of Sciences has decided to award the

2017 NOBEL PRIZE IN PHYSICS

Rainer Weiss
Barry C. Barish

Kip S. Thorne

“for decisive contributions to the LIGO detector and the observation of gravitational waves”
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EURRENT S TATCES

Detection of several gravitational wave sources consistent with
stellar mass binary black hole systems

We will continue to detect black hole binaries. Is there anything
else to wish for?

The future looks bright until you realize that...



Current algorithms target | | IGO and Virgo will continue ... $1b+ facility, with ever
4D parameter space to increase their sensitivity increasing sensitivity,

and we can only cover
a 4D parameter space...

5D more to cover
Poorly scalable algorithms

New detectors will be added
to the existing network

_ , Detection to publication
Adding more cycles will is a 3 month cycle
not cover all the physical

parameter pace

At design sensitivity, we will

New gravitational wave see events every 15 mins...
sources to be detected s this a blessing or a curse?




Current algorithms target
4D parameter space

Poorly scalable algorithms

New di
tot
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Adding more cycles will
not cover all the physical
parameter pace

At deg

New gravitational wave eve
sources to be detected IS this




Future directions

Change the existing paradigm of gravitational wave astrophysics

Key ingredients

Numerical and analytical relativity to understand and model sources
New scalable algorithms to cover the entire 9D parameter space

Detect and characterize sources in real time




Compact binary populations
IN dense stellar environments

Globular clusters known
to have black holes

Andromeda Galaxy
ESA/Hubble (2.2 million light-years
from UNSAVEND)

Detection of black holes in M22 -
Strader et al, Nature, 2012
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Compact binary populations
IN dense stellar environments

Observation of black holes
in the Galactic Center
Hailey et al, Nature, 2018

Evidence of compact
source populations both
in Galactic Clusters and

the Galactic Center

Search for compact
binary populations in
these environments is

warranted!

Model these sources
Loutrel, Pretorius, Yunes







What about higher order modes”?

Rebel, Huerta, et al, arXiv:1807.09787
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https://arxiv.org/abs/1807.09787

Distribution of needs 1in simulation and data-driven science
in the science community

Data

Generation

Velocity

Software Variety
data
Data

Discovery, management i processing,
Insights, transformation

Prediction

Power and
energy
efficiency

Analytics
algorithms

Storage
and Visualisation

Vo Scalability
and
performance

Data
analytics,

Mining,
unsupervised
learning




National Strategic Computing Initiative

H Workload Compute Node
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LIGO Data Grid (LDG): 9 HTC dedicated Containerized LIGO
clusters, 17k+cores workflows can seamlessly
Stakeholder of Open Science Grid (OSG) use Blue Waters
Huerta et al, eScience, 47, 2017 compute resources



https://arxiv.org/abs/1709.08767

BOSS-LDG: A Novel Computational Framework that Brings Together
Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid

to Accelerate Gravitational Wave Discovery

E. A. Huerta', Roland Haas', Edgar Fajardo?, Daniel S. Katz!,
Stuart Anderson®, Peter Couvares®, Josh Willis*, Timothy Bouvet!
Jeremy Enos', William T. C. Kramer', Hon Wai Leong' and David Wheeler!

INCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
{elihu, rhaas, dskatz, tbouvet, jenos, wtkramer, hwleong, dwheeler} @illinois.edu
2University of California, San Diego, La Jolla, California 92093, USA
emfajard @ucsd.edu
3LIGO, California Institute of Technology, Pasadena, California 91125, USA
{anderson, peter.couvares}@ligo.caltech.edu
4 Abilene Christian University, Abilene, Texas 79699, USA
josh.willis@acu.edu

Accepted to eScience, 13th |IEEE International Conference on eScience

New framework used during the last several weeks of aLIGO-VIRGO

second discovery campaign (O2)
Blue Waters was the largest contributor for gravitational wave searches at
several points by the end of O2




National Strategic Computing Initiative
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https://arxiv.org/abs/1709.08767

Multi-Messenger sources: combination of Einstein’s general
relativity with magnetohydrodynamics and microphysics




e Models and simulations

~ Scientific Discovery ™

Gamma rays, 50 to 300 keV GRB 170817A

1,500
(7]
3 1,000

. Observations

Gravitational-wave strain GW170817

G w=8xT,,

Routine: black hole and neutron star
collisions
e, [uture: supernovae, oscillating neutron
stars....




Gravitational Wave Discovery

KAGRA and LIGO-India will eventually come on-line...

Do we go and seize all HPC and HTC resources to detect and characterize

new GW sources 1n a timely manner?
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What if we could do this in real-time?

What if we could handle noise
anomalies with no human
intervention?
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On disruptive changes and data revolutions

HPC and Big Data Revolution Coexist
Roadmap for Convergence
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Deep Learning

From optimism to breakthroughs
INn technology and science

ARTIFICIAL
INTELLIGENCE
MACHINE
LEARNING
e DEEP
LEARNING
MK XA
/Y N\ M /Y N\

1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s



Trends In simulation and data driven science

Extreme Science and Engineering
Discovery Environment

Interoperability of
cyberinfrastructure
resources

A natlonal, distributed computing partnership for data-Intensive research

In the last 24 Hours
5 346,000 Jobs
Site  (None) 4,696,000 CPU Hours
DNTARIO UEBEC 7,784,000 Transfers
989 TB Transfers
In the last 30 Days
Otowgg Monich 9,352,000 Jobs
T NEINOVA SCOTIA 129,774,000 CPU Hours ° °
Open Science Grid as a
23,888 TB Transfers
In the last 12 Months e e
universal adapter for disparate
1,585,993,000 CPU Hours
2,220,289,000 Transfers

compute resources and

OSG delivered across 126 sites

-y S science communities
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Emergent trends for simulation
and data driven science

» US Presidential Strategic Inrtiative: convergence of big data and
HPC ecosystem

* European Data Infrastructure and European Open Science Cloud:
-PC I1s absorbed into a global system

» Japan and China: HPC combined with Artificial Intelligence (Al)

» Japan: $ 1 billion over the next decade for big data analytics,
machine learning and the internet of things (loT)

» China: 5>-yr plan raises big data analytics as a major application
category of exascale systems



ARTIFICIAL INTELLIGENCE

Programs with the ability to
learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn

without being explicitly programmed




Deep Learning

Transforming how we do science

Overview Representation learning
+ Very long networks of artificial neurons + Does not require hand-crafted
(dozens of layers) features to be extracted first
- State-of-the-art algorithms for face - Automatic end-to-end learning
recognition, object identification, natural
language understanding, speech + Deeper layers can learn highly
recognition and synthesis, web search abstract functions

engines, self-driving cars, games...
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InNnovate@NCSA

Adapt existing deep learning paradigm to do classification
and regression of time-series data

Replace pixels in images by time-series vectors; pixel
represents amplitude of waveform signals

Combine HPC to construct catalogs of numerical relativity

waveforms with new deep learning training algorithms to

find weak gravitational wave signals in non-Gaussian and
non-stationary gravitational wave data




Innovative Hardware
Architectures

Develop state-of-the-art neural
nets with large datasets

Accelerate data processing and
inference

Fully trained neural nets are
computationally efficient and
portable

Deep Filtering

Applicable to any time-series datasets
Faster then real time classification and regression

Faster and deeper gravitational wave searches



Whitened Strain

Deep Filtering

D George & E. A. Huerta, Physical Review D 97, 044039 (2018)
First scientific application for processing highly noisy time data series

~ Using spectrog rams |ssu b-optimal for g raVItatlon é‘l wave data anaIyS|s

Frequency (Hz)




Deep Filtering

First scientific application for processing highly noisy time data series

Sensitivity for detection is similar to a matched filter in Gaussian noise...
but orders of magnitude faster...

Deep Convolutional Neural Network (GPU)
10200x

Deeper Convolutional Neural Network (GPU)
2030x

Deep Convolutional Neural Network (CPU)
163x

Deeper Convolutional Neural Network (CPU)
13x

Matched-filtering (CPU)

1x
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Deep Filtering

First scientific application for processing highly noisy time data series

Sensitivity for detection is similar to a matched filter in Gaussian noise...
but orders of magnitude faster...
and enables the detection of new types of gravitational wave sources

Eccentric BBH Signal: L0020 Spin-Precessing BBH Signal: SXS-0163

Whitened Strain
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Deep Filtering

D George & E. A. Huerta Physics Letters B 778 (2018) 64-70
First scientific application for processing highly noisy time data series




Deep Filtering

Rebei, Huerta, et al, arXiv:1807.09787
First scientific application for processing higher-order multipoles
waveforms in highly noisy time data series

A new class of gravitational wave sources can be seamlessly detected
by deep learning with the same accuracy we can 1dentify
quasi-circular waveform signals
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https://arxiv.org/abs/1807.09787

https://www.youtube.com/watch?v=87zEll hkBE

Detecting Gravitational Waves in Real-Time with Deep Learning

WOLFRAM NVIDIA

Data from a LIGO Interferometer around the first event (GW150914)
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Convolution Layer 2 . .

Convolution Layer 3

Fully Connected Layer

Output Layer

Gravitational Waves Not Detected

Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data - Daniel George and E. A. Huerta (2017)

FUSION OF Al & HPC & SCIENTIFIC VISUALIZATION
REAL-TIME DETECTION AND REGRESSION OF REAL EVENTS IN RAW LIGO DATA


https://www.youtube.com/watch?v=87zEll_hkBE

Deep Learning for
Observational Astronomy

Post-process images to classity and cluster noise
anomalies In real-time

Goal: enable real-time discovery with the Large
Synoptic Survey lelescope (LSST); I5TB of data per
night, thousands of triggers per second

Case study: LIGO data from first observing run



Nmse anomalies in LIGO data

1@80Lines 14@0Ripples Air_Compressor Blip Chirp Extremely_Loud Helix

Light_Modulation Low_Frequency_Burst Low_Frequency_Lines None_of_the_Above Paired_Doves Power_Line

i --

. -

Koi_Fish

I

Classity and cluster anomalies
according to morphology. First
application to LIGO Science

George, Shen & Huerta
2017 NIPS Workshop

Physical Review D,

W Rapid Communications

, ®\ 1080Lines
Perform the same task fort g 1400Ripples
Air_Compressor
unlabeled datasets i

Chirp

Classify and cluster new Extremely_Loud

Reverse_Chirp

classes of glitches in real-time [ y® & Noneof_the Above

Add this new capability to
Deep Filtering



Now consider these anomalies

Develop a research program to
bring together deep learning
and observational astronomy

Dark Energy Survey (DES)

|

|
|

Post-process entire map to classify
known, unlabeled objects and
1dentify new ones with
clustering algorithms




Application to galaxy images

e Elliptical
SDSS e Spiral

Khan, Huerta, Wang and Gruendl,
arX1v:1812.02183

36k+ raw galaxy images
from the Sloan Digital
Sky Survey clustered
according to morphology
and 3 filters

" 0.9999943 0.99999285







Deep Learning at scale

What 1s the optimal neural network architecture to
enable discovery 1n higher dimensional signal manifold?

Is 1t possible to design deeper and more accurate neural
net models using larger training datasets while also
reducing the length of the training stage?



Deep Learnmg at scale

Training on Up to 384 GPUs with 16 Parameter Servers
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Scientific Machine Learning

What do neural nets learn?
Reproducible training methods
How do we interpret their results?
What 1s the cost of failure?

Where 1s Al heading?



https://www.youtube.com/watch?v=87zEll hkBE

Detecting Gravitational Waves in Real-Time with Deep Learning
WOLFRAM nNnvVvIDIA
Data from a LIGO Interferometer around the first event (GW150914)
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Convolution Layer 3
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Gravitational Waves Not Detected

Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data — Daniel George and E. A. Huerta (2017)

FUSION OF Al & HPC & SCIENTIFIC VISUALIZATION
REAL-TIME DETECTION AND REGRESSION OF REAL EVENTS IN RAW LIGO DATA


https://www.youtube.com/watch?v=87zEll_hkBE
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