Introduction

Detection of Earth-like exoplanets within habitable zones around Sun-like
stars is very difficult due to the inherent variability of host stars.

Doppler radial velocity (RV) for an Earth-like planet: 0.1 m/s
Apparent RV induced by stellar activity: = 1 m/s

Many methods address activity signals at the RV level, but a more refined
approach is needed at the spectral level.

We present £STRA*, an unsupervised deep-learning approach that
exploits the rich information in stellar spectra to mitigate stellar activity and

enhance RV measurements without relying on detailed physical models.

“/ESTRA: Auto-Encoding STellar Radial-velocity and Activity

Spectrum Auto-encoder & RV Estimator

Network Input: Observed spectrum y, ., without prior RV information
Network Outputs:
Doppler-invariant latent vectors s: encodes intrinsic line variations
Rest-frame spectrum y,.;: comprehensive model of stellar activity
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Training via Data Augmentation

The loss function is designed to impose structure on the latent space by
explicitly disentangling the Doppler shift from stellar activity.
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The RV Estimator can be trained independently using Lyy

Perfectly Reconstructs Simulated Data

type: spot type: plage
size: 0104
fatitude: 30 deg)

We created a set of simulated spectra
using the SOAP 2.0 code, which models §]°°]

size: 010 &
latitude: 30 deg
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To construct full spectra, we:
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Build a quiet spectrum: o
* Generate a list of line locations § 1000 [ e el =
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¢ Randomly draw width and depth
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Perturb each line using CCF:
¢ Calculate the CCF with four random active
regions drawn from a prior
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CCF ratios for a solar-type star color-coded by

hiness during varying phases of stellar rotation.
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Recover 0.1 m/s Earth-like signals
from random stellar activity

Latent distribution of the original (blue) and
artificially Doppler-shifted (red) spectrum
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« Perturb each line by multiplying the CCF
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Grey: the observed spectrum with four active regions and photon noise
Red: the reconstruction Black: noise-free underlying spectrum

RV scatter: 3.38 m/s — 0.46 m/s
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Conclusion & Outlook
. * Requires ~200 spectra.
Conclusion d P

AESTRA effectively detects 0.1 m/s
signals in simulated data amidst 3.4
m/s stellar activity and 0.3 m/s
photon noise.

Successfully captures stellar activity
with strong time structures.

Limitations

 Tested only on simulated data,
without telluric/instrumental noise.

* Not utilizing time-domain information.

Future Plans
* Apply £STRA to solar data.
 Incorporate time-domain analysis,
» Deal with telluric features.
* Optimize for fewer spectra.

* Apply to exoplanet hosts, improving
characterization and validating low
S/N candidates.




