
• In optics, the Rayleigh criterion states that two images 
are just resolvable when the center of the diffraction 
pattern of one is directly over the first minimum of the 
diffraction pattern of the other (image below).

frequencies of 𝑓! − 𝑓" ≅ 1.45ℜ (ℜ defined below)
• Unevenly spaced time series can result in 

periodograms with significant false peaks that can be 
mistaken as signals arising from physical processes.

• Using the Rayleigh criterion to check if frequencies are 
independent from each other can help avoid reporting 
spurious peak as real signals

Introduction

• We apply the Rayleigh criterion and our corollaries 
mentioned above to three toy models with known 
frequencies of oscillation.

• Lastly, we explore the Rayleigh criterion with the 
archival data of Barnard’s star radial velocities (RV) and 
the Kepler light curve of active star KIC 891916.

• We determine that checking if our frequencies are 
separated by less than 2ℜ avoids false detections of 
spurious signals

• Application of Generalized Lomb-Scargle
periodogram (GSLP, Zechmeister & Kürster 2009) to 
RV and photometric time series.

• Definition of the Rayleigh resolution in the 
frequency domain in terms of the time baseline

ℜ = !
"

(1)
• Rayleigh Criterion for harmonic analysis

𝑓! − 𝑓# ≥ 𝐶 ℜ, (2)
where 𝐶 is a constant taken to be between 1.45 to 2 
(Thomson & Emery 2014) and set equal to 2 in our 
analysis following our results from Fig. 2.
• Corollary 1: for an oscillation to be detected using a 

periodogram, it must be distinguishable from zero 
frequency according to the Rayleigh criterion.

• Corollary 2: oversampling the frequency grid does 
not increase the Rayleigh resolution.
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• In power spectrum 
analysis both the 
concept of resolution 
and the Rayleigh 
criterion are applicable

• Previous astronomical 
studies by Loumos and 
Deeming (1978) and 
Kovacs (1981) proposed 
a minimum separation 
between two 

This work is supported by the University of Delaware Graduate 
College through the Unidel Distinguished Graduate Scholar Award.
References:
Kovacs G., 1981, Ap&SS, 78, 175
Loumos G. L., Deeming T. J., 1978, Ap&SS, 56, 285
Rayleigh L., 1879, The London, Edinburgh, and Dublin Philosophical Magazine and 
Journal of Science, 8, 261
Reinhold T., Reiners A., Basri G., 2013, Astronomy & Astrophysics, 560, A4
Ribas I., et al., 2018, Nature, 563, 365

Acknowledgments & References

• The Rayleigh Criterion is a fundamental part of 
harmonic analysis and should be more applied in the 
analysis of astronomical time series.

• Our results highlight that closely spaced frequencies 
may appear as a single periodogram peak when the 
time baseline is not long enough to resolve them.

• Closely spaced peaks might not be independent from 
each other when dealing with unevenly spaced data 
sets.

• Using C = 2 in equation (2) guarantees that a signal is 
observed for two full cycles but as seen in the literature 
in some cases a frequency separation of 1.45ℜ is 
enough to resolve two independent frequencies.

• Applying the Rayleigh criterion can avoid false positive 
detections of planets in RV time series when there is 
not enough time coverage of a planet’s orbit.

Conclusions
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Splitting of Periodogram Peak:
• Create periodic signal 𝑦(𝑡) designed to mimic an RV time 

series.
• Begin with a realization of 500 samples and a uniform time 

separation. We omit 420 points from the sample, while 
preserving the first and last data point, to obtain 𝑦′(𝑡) with 
the same Rayleigh resolution.

• The thinned series' periodogram has a close neighboring 
peak to the true frequency, having the second highest 
power.

• This new peak is 
spurious and 
statistically 
indistinguishable 
from the original one 
since it fails the 
Rayleigh criterion.

• Spurious splitting of 
a single peak into 
doublets can 
happen when there 
is a large variation in 
𝚫𝒕, as is the case in 
this example.

Varying time length:
• Observe the 

performance of the 
GLSP at different 
values of 𝑇.

• Start with a set of 
100 timestamps of 
uniform Δ𝑡 = 2. We 
then create 100 new 
sets of timestamps 
by adding a new 
data point in each 
trial keeping Δ𝑡
unchanged.

• Have three signals, 
two independent 
sinusoids (𝑦!, 𝑦") 
and the sum of the 
two (𝑦# = 𝑦! + 𝑦").

• Once 𝒇𝟐 = 𝟐𝕽 the 
periodogram peak 
aligns with the 
correct frequency.

• Astronomical time 
series may contain
more than two periodic components, and other factors 
that can diminish the efficiency of the periodogram.

Barnard’s Star:
• Old M-dwarf star with a reported planet detection with orbital 

period of 232.8 ± 0.4 days (Ribas et al. 2018).
• The long-term activity cycle has a reported period of 6600 days, a 

separation of 1.13ℜ from zero frequency.
• Used a cubic polynomial to subtract the long-term activity cycle 

from the RV observations.
• Residuals have smaller standard deviations and more suppression 

of low-frequency peaks than residuals from the sine model.
• Our polynomial fit shows that observers cannot assume that a 

period is correctly measured for signals with 𝒇 < 𝟐𝕽, or even 
that such signals are periodic

KIC 891916:
• Part of the sample of 40,661 active stars studied in Reinhold et 

al. (2013) observed by the Kepler mission and used to study 
differential rotation.

• Reinhold et al. (2013) computed the GLSP of light curves binned
in two-hour windows and subtracted a sinusoid at the frequency 
with the highest power. This procedure was repeated four times.

• Of the five periods recorded, the first period 𝑃! is explained as 
surface rotation, and if another period is within ±30% 𝑃!it is 
attributed to differential rotation.

• The reported differential rotation period is less than 𝟐𝕽 from 
𝑷𝟏 and the peak is not statistically significant.

Oversampling the frequency grid:
• Oversampling refers to creating a frequency grid with Δ𝑓 < ℜ, 

equivalent to zero-padding in the even sampling case.
• We demonstrate the veracity of Corollary 2 by creating a time 

series of 100 observations with 2 sinusoids           
𝑦 𝑡 = sin(2𝜋 𝑡 𝑓!) + cos(2𝜋 𝑡 𝑓" + 𝜙)

where 𝑓! − 𝑓" = ℜ and zero-padding the time series (Fig.3).
• We evaluate our time series for three different values of 𝜙 =
[0, &

"
, 𝜋] and compute the periodogram for each case.

• Our results show two of the three cases do not resolve the 
individual peaks, showing that zero-padding is not guaranteed to 
improve periodogram resolution.
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Fig. 1

Fig. 2 (scan QR code to see animation)

Fig. 4

Fig. 3

Fig. 5
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