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EMPEROR is a highly flexible Python-based algorithm that
automatically searches for Keplerian signals in radial velocity
time-series in a Bayesian framework, featuring:

e Native Keplerian and noise models
Adaptative Parallel Tempering MCMC sampler
Model Comparison

Posterior Estimation

Statistical Analysis

Uncertainty Quantification

Allin a modular package, easy to upgrade and easier to use.
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EMPEROR builds blocks. A block contains a model,
alongside parameters and metadata.

After selecting a sampler, a temporary script is created,
where each block hard-codes it's own data along the
sampling routine. This enables true multi-processing, for
maximum efficiency.

Posteriors are estimated with Gaussian Mixtures or KDE.
If the model is better than the previous one, add a block, use
posteriors as priors. Repeat.
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As a first benchmark we want to showcase the problem of the
Gaussian shells. It's familiar, scalable and analytically trac-
table.

We compared our APT algorithm with dynesty's Dynamic NS.

Fig 2.
Loglikelihood evaluations
of a 2D Gaussian shell with a tight grid.

And DNS: )
* precise Z estimations
e speeds up with Ndim (!*)
e Abitslow overall

/We notice that APT

e not so tight constraints
on Z (*!)

e |terations are ~15 times
faster at d=2.

\_ e About ~1.3 faster at d=20 Y.

reddemcee dynesty

Table 1. Performance
comparison for Gaussian
Shells. Yellow is better.
Time in (seconds)

N eval (x 1000)

Nits (x 1000/seconds)

Ndim| Time | Neval| Nits | Time | N eval Nits

5 _|e259] 2200 | 3515 | 5012 | 199.40 | 396
20

93.29 || 2200 §23.58 |1 60.64 | 1107.63

Analytical

N dim reddemcee

log(2)

dynesty

los(Z) log(2)

Table 2. log (Z) estimation
with errors.

"2 | 475 |-77:056 | -178: 0.08
"5 | 567 |-emeias | 566000

20 -36.09 [|-29.57+6.61) -36.0510.15
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Nested samplers have the gbility to accurately estimate the
marginal likelihood or evidende (2), in contrast to MCMC.
Any Bayesian implementatipn needs to consider:

e The time they take to run
e The accuracy of the estimgtions
e How to make such methodp fully automated

MCMC )
+ better at posterior estimation
+ fast iterations

" Nested Sampling

+ petter at evidence estimation
+ good with multi-modal
distributions

- scales poorly with dimensions| - inefficient with multi-modal

- scales poorly with prior distributions
(olume. - poor evidence estimation
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As our second benchmdrk, we use 51Peg to compare
exoplanetary performance. Wfe make the runs without any
hand-tinkering. A wide priof volume is used (eg, period
~U[tmin, tmax]), default batchgs, walkers, temperatures, etc.

e After 4 hours of running, DNS didn't converge

e Hard boundaries were marjually added for DNS and re-run.
Period ~U/ (3, 5), Amplitudg ~i/ (40, 60) and Eccentricity ~U/
(O, 0.1), it converged after]~1.5h

Keplerian Model
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Fig 3. Phase-folded RV. UQ Model calculated with
chaos polynomial expansions from the posteriors.

reddemcee dynesty* Butler 06

_ Table 3. Performance
m _ comparison for 51 Peg.
| The convergence
Z |-194.34+36.65) -218.80¢346 | |timefor DNS was
P huge.

Solutions are both
“Ece more accurate and
a0 precise for APT.

The evidence has better constraints with DNS. But since
convergence is slow, we need to constrain the search
boundaries, rendering the evidence (which is prior volume-
dependent) nuanced by them. Bringing forth the question:

what good is the evidence then, for model comparison?

Period 1 Amplitude 1 Phase 1

T T T T T T T T T T
54 56 58 ! 2 3 4
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4.225 4.230 4.235 4.240 46

Eccentricity 1 Longitude 1

Fig 4. 94% High Density
Intervals for the keplerian
block. The dot indicates
the mean.
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EMPEROR's default sampler}is reddemcee, which is an original
Adaptative Parallel Temperjng implementation of the emcee
sampler. APT is characterised for it's speed and robustness.

Each replica is annealed by a factor g € [0, 1]
Hotter systems have locgl maximas closer to each other
Sampling is less likely tojget stuck in local maxima
Replica exchange betwedqn systems
p ladder adapts as a funcgion of replica acceptance rate

Evidence estimated with ghermodynamic integration

Adaptative |
—— Geometrical
Linear
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APT seems exceptionally better suited for wide searches, in
both speed and performance.
Let's take a look at this 'mystery system', for complexity's sake:
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Fig 5. 3 signals, 2 instruments.
P=[1352, 24.8, 12.5] days. K=[44.8,2.1, 1.5] ms-1

Optimal estimate with Gaussian Mixtures

Optimal estimate with Gaussian Mixtures
for Amplitude 2

for Period 2

Optimal estimate with Gaussian Mixtures
for Eccentricity 2
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Fig 6. BGM posterior estimation for the second Keplerian block.

o0 1©Q DO [IN T E FUTURE

EMPEROR has evolved greatly since it's first version and has
been used in 7 published works already.
At this moment, leading the to-do list:
e Submit paper
e Merge with EMPEROR's photometry version
e Add astrometry models
e |Include beta ladder schemes, ie. Feedback Optimised
e MOM estimates for Keplerian priors
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