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Approach

Datasets and Preprocessing (Figure 2-B.1): Training data is 3 years of HARPS-N sun-as-a-star spectra (34450 spectra) from 2015 to 2018. The RV corrections are provided by the HARPS-N team. Alpha-shape Fitting to Spectrum (AFS) algorithm [2] implementation in the
RvSpectML package is used for continuum normalizations. Interpolation uses a sinc kernel, preventing the introduction of noise due to intra-pixel sensitivity.

Obijectives

1. Characterizing stellar noise components in terms of

their pixel-by-pixel effects on the spectrum, using DL.
Ancillary Datasets (Figure 2-B.1): (1) Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) provides near single-granule spatial resolution photometric maps of the solar surface. These data were reduced using the SolAster Package to

quantify solar activity conditions. (2) Observing conditions for each observation were provided by the HARPS-N team. In tests of our neural network, we use data such as the “sun-as-a-start” RV model, the convective and photometric velocity components, and more as targets
for the network during training.

2. Quantifying the contribution of each stellar RV noise
component to the RV error in each spectrum down to, or
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mean, standard deviation, skew and
kurtosis for the pixels associated with
each line. Then, the mean and standard
deviation are derived across time, as
features, for each line to quantify the

Wavelength

sensitive to a given type of stellar
activity (Figure 3). Larger CNNs are
trained on different subsets of multi-
line inputs to help understand how
the removal of lines sensitive to

« CCF studies [1],[2] cannot account for differences in
responses of individual to stellar activity.

. Activity-sensitive line searches focus on line depth
changes [3],[4], rather than asymmetric line-shape

Figure 2: Each spectral line from HARPS-N spectra was input to a CNN targeting an injected
planetary RV (red) and separately the “sun-as-a-star” RV variation (purple). The top 100 top
performing lines for each trial are highlighted.
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Ancillary data Ancillary data

probe the effects of stellar activity on the spectrum at clustering. So, using this as a baseline,

unprecedented detall.

we wish to explore physically derived
features in the coming year.

Figure 3: Various stellar activity components (from the ancillary dataset) are correlated with the spectral lines in
each cluster. The clusters in this figure are derived by applying dbscan on four statistical features. The correlations
of the clustered lines with the stellar activity signals seem relatively strong in some clusters.

Figure-4: Performance results of the same CNN architecture trained on different subsets of
lines (inputs) targeting injected planetary RVs. The removal of lines sensitive to stellar activity
(second boxplot from the left) results in ~25% lines dropped from the top 100 lines (left most
boxplot). This removal of lines appears to improve the average performance of the CNNSs.
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