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1. Characterizing stellar noise components in terms of
their pixel-by-pixel effects on the spectrum, using DL.
2. Quantifying the contribution of each stellar RV noise
component to the RV error in each spectrum down to, or
below, instrumental noise levels, using DL.
3. Determining the data requirements of neural networks
in terms of constraints on SNR, resolution, cadence, and
number of spectra to effectively train a neural network to
characterize and/or quantify each component of stellar
RV jitter.

Datasets and Preprocessing (Figure 2-B.1): Training data is 3 years of HARPS-N sun-as-a-star spectra (34450 spectra) from 2015 to 2018. The RV corrections are provided by the HARPS-N team. Alpha-shape Fitting to Spectrum (AFS) algorithm [2] implementation in the
RvSpectML package is used for continuum normalizations. Interpolation uses a sinc kernel, preventing the introduction of noise due to intra-pixel sensitivity.

Ancillary Datasets (Figure 2-B.1): (1) Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) provides near single-granule spatial resolution photometric maps of the solar surface. These data were reduced using the SolAster Package to
quantify solar activity conditions. (2) Observing conditions for each observation were provided by the HARPS-N team. In tests of our neural network, we use data such as the “sun-as-a-start” RV model, the convective and photometric velocity components, and more as targets
for the network during training.

Figure 2: Each spectral line from HARPS-N spectra was input to a CNN targeting an injected 
planetary RV (red) and separately the “sun-as-a-star” RV variation (purple). The top 100 top 

performing lines for each trial are highlighted.

Figure 1: Technical Approach Flow Diagram.

Figure 3: Various stellar activity components (from the ancillary dataset) are correlated with the spectral lines in
each cluster. The clusters in this figure are derived by applying dbscan on four statistical features. The correlations
of the clustered lines with the stellar activity signals seem relatively strong in some clusters.

Clustering (Figure 1-F): HARPS-N
spectral lines are empirically generated
using the public RvLineList package. In
order to measure the change in each
line over time and identify lines with
similar changes, a feature extraction
step followed by clustering is
performed. The feature extraction step
involves, for each line, deriving the
mean, standard deviation, skew and
kurtosis for the pixels associated with
each line. Then, the mean and standard
deviation are derived across time, as
features, for each line to quantify the
change in each line over time. In order
to characterize and group together
similar manifestations of stellar noise,
DBSCAN clustering algorithm was
used. The clustering results are
validated by correlating the clustered
lines with stellar activity signals from
the ancillary data. The validation
results, depicted in Figure 3, indicate
that the features affect the quality of
clustering. So, using this as a baseline,
we wish to explore physically derived
features in the coming year.

Deep Learning (Figure 1-C):
Individual spectral lines are subset
from HARPS-N using a line mask
(G2.Espresso). CNNs are trained
using a single spectral line as input
(15 x ~35K) and the time aligned
ancillary (photometric velocity,
convective, etc.) value as the target.
This approach results in ~5k x N
trained CNNs (~5k spectral lines;
N=23 SolAster features). We first
demonstrated this line-by-line CNN
concept by targeting injected RVs, an
output of the preprocessing pipeline;
this highlights lines that are
insensitive to stellar variability (low
RMSE) and lines that are sensitive to
stellar variability (high RMSE). The
CNNs’ targets are changed to “sun-
as-a-star” RV components, providing
a more direct way to understand
what lines are more, or less,
sensitive to a given type of stellar
activity (Figure 3). Larger CNNs are
trained on different subsets of multi-
line inputs to help understand how
the removal of lines sensitive to
stellar activity affect our ability to
identify planetary RVs (Figure 4).

Figure-4: Performance results of the same CNN architecture trained on different subsets of
lines (inputs) targeting injected planetary RVs. The removal of lines sensitive to stellar activity
(second boxplot from the left) results in ~25% lines dropped from the top 100 lines (left most
boxplot). This removal of lines appears to improve the average performance of the CNNs.
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● State-of-the art methods use cross-correlation function
(CCF) or search for activity-sensitive lines [1],[2],[3],[4].

● CCF studies [1],[2] cannot account for differences in
responses of individual to stellar activity.

● Activity-sensitive line searches focus on line depth
changes [3],[4], rather than asymmetric line-shape
changes which are more highly correlated with stellar
RV jitter [2].

● Our method aims to globally characterize all such
changes in the spectrum, by use of a large quantity of
high quality input data (34450 HARPS-N spectra over 3
years) and by harnessing the power of DL methods to
probe the effects of stellar activity on the spectrum at
unprecedented detail.
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