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1300x stability: 0.53 cm-1 initial insult 
reduced to 0.0004 cm-1 in three passes

On-sky stability topic
Off-sky characterization topic

“Crossfading EDI” uses an in-series 
interferometer to stabilize against 
unknown and irregular on-sky
spectrograph drifts by combining 
fringing and nonfringing components.  
These react oppositely in phase to a 
disperser or detector wavelength drift, 
and thus can be made to cancel in 
analysis.  This stability gain (~1000x) 
multiplies conventional stability 
mitigations.  Since the periodic comb 
*multiplies* rather than adds, science 
and calibration signals fall on exactly 
the same pixels, maximizing ability to 
compensate for instrumental 
distortions– improving RV precision.
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for Doppler radial velocimetry1–9 and high-resolution
spectroscopy.10–15 Other workers have adopted the EDI method
from our laboratories and demonstrated a Doppler planet
detection.5 We have demonstrated EDI in both applications in
the near-infrared at the Hale 5-m telescope at Mt. Palomar
Observatory (Fig. 1) with a version called TEDI, (the T denotes
the TripleSpec16 spectrograph to which it was coupled). An ear-
lier report2 describes the Doppler velocimetry, and this report
describes the spectroscopy.

This is the first time multiple delays have been used on star-
light to recreate a high-resolution spectrum. Previous EDI use on
stellar spectroscopy used a single delay.11 Multiple delays had
been used previously12 only on laboratory sources.

The TEDI project was designed primarily to test Doppler
measurements, and the selection of interferometer glass etalons
and observing schedule were prioritized for this purpose. These
were not optimal for testing high-resolution spectroscopy (hav-
ing a gap in coverage of delay space when contiguous coverage
is needed to avoid ringing in the lineshape). Nevertheless, the
preliminary results for high-resolution spectroscopy using
multiple delays are a resounding success in two important areas.

1.4 Resolution, Robustness Demonstrated

We have demonstrated on starlight that the EDI technique can
produce both high resolution, a factor of 4× to 10× beyond the
native spectrograph resolution of ∼2700, and have extremely
wide simultaneous bandwidth, limited only by the bandwidth
of the native spectrograph, in this case (0.95 to 2.45 μm).

Second, the native spectrograph in our study suffered from
extremely large and irregular PSF drifts that would normally

have precluded the high resolution we obtained, even if by
some other means the slit width and focal spot had been reduced
by several times and the detector pixel density increased. We
realize now that a great advantage of the EDI technique, espe-
cially when used with multiple delays rather than a single delay
as used previously, is an order of magnitude or more improve-
ment in the stability against PSF drifts.

We observe an approximate 20-fold decrease in the transla-
tional reaction of a ThAr lamp line to a translational insult
along the dispersion direction. This robustness to PSF errors is
explained theoretically and demonstrated with measurements.
A recently realized method of further reducing the PSF shift sen-
sitivity to zero is described theoretically and demonstrated in
a simple simulation which produces a 350× times reduction.

Third, we demonstrate EDI’s dramatic robustness to fixed
pattern (FP) noise such as from bad detector pixels. These pol-
lute the native spectrum but not the EDI-derived spectrum mea-
sured simultaneously.

The TEDI data set is instrument limited rather than photon
limited. A theoretical description of EDI photon-limited sensi-
tivity compared to other spectroscopy techniques is presented in
a companion paper.

2 How Externally Dispersed Interferometry
Works

The EDI technique uses a field-widened Michelson interferom-
eter (Fig. 1) crossed with (in series with) a dispersive spectro-
graph to heterodyne unresolvable narrow features to a detectable
low frequency moiré pattern. Detailed instrument description is
in Ref. 2 and instrument theory for a single delay spectroscopy is
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Fig. 1 (a) The T-EDI interferometer (black and silver) sits atop TripleSpec (native) spectrograph (blue
cryogenic cylinder) which bolts to Cassegrain output (39 in. diameter cavity) of the Mt. Palomar 200 in.
mirror. (b) TEDI 2.01 intercepts starlight beam (1) heading for TripleSpec and uses a dichroic split input
tracking system (3) to mixing in ThAr lamp (5) to feed a symmetric, collimated interferometry cavity
(beamsplitter 10). One interferometer output (13) is dichroic split (14) to a sensitive chopped IR
diode (15) for flux maximization and a fringe tracking camera (16) for cavity nulling. The complementary
interferometer output (17) is open-path relayed (18, 19) to the TripleSpec slit. (c) Externally dispersed
interferometer (EDI) scheme—a fixed delay interferometer is crossed with a disperser. The sinusoidal
transmission of the interferometer creates moiré patterns whose phase encodes the Doppler velocity and
whose shape encodes the spectrum’s shape. (Schematic graphic from Ref. 1 reproduced with permis-
sion © The Astronomical Society of the Pacific. All rights reserved.)
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(A1) Externally Dispersed Interferometer (EDI) scheme.  (A2) EDI 
inserted into beam prior to Hamilton echelle spectrograph at Lick 
Obs. (A3) Snippet of echelle spectra around sodium doublet (589 nm) 
showing extremely periodic interferometer comb multiplying stellar 
spectrum. (A4) Demo of deliberately shifting raw data (dashed lines 
showing native spectral shift)--yet the crossfaded output (red peak) 
does not shift. (A5) Demo on the worst kind of shift: irregular and 
bipolar.  (A6) Demo on data from Hale telescope. (A7) Demo showing 
1300x stability after 3 iterations, and optional 2x resolution boost.
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A white light illuminated Fabry-Perot generated high frequency spectral information at discrete frequencies
(simplifying analysis).  By comparing fringing and nonfringing signal components that observe the same source 
spectrum simultaneously but using different signal routes (due to the heterodyning of fringing), we are able to
tease out the effect of spectrograph point spread function (PSF) asymmetry independent of source asymmetry.  

A symmetric PSF is optimal for Doppler stability. We used an EDI with the Keck Planet Finder 
spectrograph during off-sky engineering tests at UC Berkeley to characterize PSF asymmetry

doi: 10.1117/12.2628388 (More details on single delay stability, SPIE 2022) doi:  10.1117/12.2627160 (More details EDI on KPF, SPIE 2022)
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(B1) Ray tracing shows potential asymmetry (graphic courtesy 
KPF team). (B2) Schematic: continuum lamp into Fabry-Perot 
(FP) into EDI interferometer into KPF spectrograph. (B3 & B4)
Photos of Michelson EDI interferometer with selectable delays 
and phase stepping PZT mirror. (B5) Example phase stepped 
data. (B6) Fourier transform of raw data showing harmonics of 
fringing (red) and native (green) components.  The optical 
heterodyning shifted red harmonics to left.  These will be 
restored to original frequencies via shifting 3.3 cm (the delay) 
to right by math.  This increases effective sensitivity envelope 
to higher than native KPF used without EDI (B7 & B8) Results 
for fringing (red) and native (green) spectra agree well. (B9) In 
simulations with deliberate asymmetric slit blur the fringing 
and nonfringing curves differ in phase behavior, independent 
of source asymmetry, providing means for measuring PSF 
asymmetry. (B10) Results for a small section of KPF: little 
asymmetry for low harmonics and possible asymmetry at 
higher harmonics.  (This particular low finesse FP emits few 
high harmonics.) 

B8 shows one echelle order

B7 shows closeup of B8

Future use with Laser Frequency Comb 
instead of this low finesse FP would provide 
more energy in higher harmonics. LFC was 
not operational the day we took data.

Results for KPF snippet

B6 shows Fourier transform of raw data

B5 shows raw data
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Both On-sky and Off-sky uses 
benefit Doppler precision
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