Université m de Montréal

iREx

The LHS 1140 System Revisited with the Line-by-line Framework

Charles Cadieux, René Doyon, Étienne Artigau, Neil J. Cook Trottier Institute for Research on Exoplanets, Université de Montréal Contact author: <u>charles.cadieux.1@umontreal.ca</u>

Context: The LHS 1140 System

- □ Two transiting super-Earths around an M4.5:
 - LHS 1140 b, inside the Habitable zone [1]
 - LHS 1140 c, an inner, smaller planet [2]
- □ From **ESPRESSO** and TESS data, **[3]** showed that planet b and c are most likely larger versions of the Earth (rocky)

The Line-by-line Method

- Apply the Bouchy framework [4] on individual spectral lines to measure Doppler shifts
- □ PRV obtained from the weighted average of all per-line velocities after rejecting high-sigma outliers [5]
- The line-by-line (**LBL**) method has led to multiple mass characterizations: TOI-1452 b [6], TOI-1759 b [7],

Host star	LHS 1140 b	LHS 1140 c	
<i>T</i> _{eff} = 3160 K	<i>P</i> = 24.7 d	<i>P</i> = 3.77 d	
Dist. = 15 pc	$R_{\rm p}$ = 1.6 R $_{\oplus}$	$R_{\rm p}$ = 1.2 R $_{\oplus}$	
<i>H</i> = 9.092	$M_{\rm p}$ = 6.5 M $_{\oplus}$	$M_{ m p}$ = 1.8 R $_{\oplus}$	
<i>P</i> _{rot} = 131 d	<i>T</i> _{eq} ~ 230 K	<i>T</i> _{eq} ~ 410 K	[3]

TOI-2136 b **[8]**, TOI-1695 b **[9]**, etc.

□ In this study, we apply the LBL on publicly available ESPRESSO data of LHS 1140 (data set of [3]). Published RVs derived from a CCF show more dispersion than LBL ones (Fig. right). The orbital solutions of the planets are significantly improved (see below).

Figure: Normalized RV errors for LBL (blue) and CCF (red) velocities of LHS 1140 observed with ESPRESSO.

Figure: Phase-folded Keplerian RV signals of LHS 1140 b (left) and LHS 1140 c (right) derived from the line-by-line (blue) and cross-correlation function (red, [3]) methods.

Archival Transits

• Our study features 4 *Spitzer* transits (of b), including 3 unpublished ones (PI: Dittmann) **TESS** data from sectors 3 and 30 also included

Figure: Stacked transits of LHS 1140 b with Spitzer.

A Habitable Zone Water World?

- Our joint analysis of RV and Transit data results in new mass-radius constraints for LHS 1140 b and c
- □ Notably, LHS 1140 b is now **above** the Earth-like sequence (see Fig.) with a density compatible with a volatile-rich interior (e.g., >1% H_2O by mass)
- □ The Habitable zone planet LHS 1140 b could be a **snowball** or an **aquaplanet**, i.e., with a frozen or liquid water surface, depending on the level of CO_2 in the atmosphere **[10]**

Detailed internal structure analysis will be presented in a forthcoming publication (Cadieux et al. in prep.)

Figure: New mass-radius constraints (1 & $2-\sigma$ contours) for LHS 1140 b (green) and c (purple). Previous results of [2] and [3] are shown with squares and circles.

