Cosmic Exploration with Infrared Telescopes The Landscape Ahead

George Helou

California Institute of Technology

Cosmic Exploration with Infrared Telescopes
The Landscape Ahead

George Helou California Institute of Technology

- Facts: Missions & Themes
- Interpretation
- Questions

Pasadena, May 2015

- Facts: Missions & Themes
 - Look ahead to 2020, 2025
- Interpretation
- Questions

Astrophysics Timeline

Cosmic Dawn:

Reionization First stars, galaxies, BH

First stars, galaxies, BH Gastrophysics

Physics of the Universe:

CMB, LSS

Dark Matter & Energy

Gravity Waves, GR

Where are we?

« Nel mezzo del cammin di nostra vita mi ritrovai per una selva oscura, ché la diritta via era smarrita. »

— Dante Alighieri

Gustave Foré, La Selva Oscura

In the midway of this our mortal life,
I found me in a gloomy wood, astray.

Canto I., lines 1, 2.

The Infrared Space Telescope Legacy

MSX

Spitzer

The Next Steps

Improved sensitivity,
 speed of mapping, or
 specialized instruments

- WFIRST
- SPICA'
- ???

Historical Perspective

- Past IR missions have been one of three types
 - Sky surveys (IRAS, AKARI, WISE, Planck)
 - Pointed observatories (ISO)
 - Pointed observatories with strong mapping capability (IRTS, Spitzer, Herschel, MSX)

 Future projects more clearly differentiated in spatial resolution and field of view

Wide-Field Surveys Capabilities

- Mostly in VIS (DES+, GAIA, LSST, Euclid), NIR (Euclid, WFIRST), radio (pre-SKA, SKA)
 - ▶ Euclid (VIS+NIR) ~24-25.5mag, z~[0.6-2.0]
 - ▶ WFIRST (NIR) ~26-27mag, z~[1.1-2.8]
 - Note: 25mag(AB) is 10⁻¹⁸ W m⁻²

Wide-Field Surveys Science

- Floods of interesting x-gal candidates calling for followup, thousands or more in a given category, with unknown MIR-FIR flux
 - ▶ Redshift range of peak SF, FIR background epoch
 - ► At FIR/VIS~I, these galaxies are CALISTO targets at $f(100\mu m) \ge 100\mu Jy$ and in some lines (>10⁻²⁰ Wm⁻²)
- Populations of stars in MW/Local Group, revealing outliers and missing links, GAIA: amazing improvement of MW/LG measure

High-Resolution Telescopes

- ALMA will be unbeatable at >300μm
 - Revealing intricate details (down to 0.007") of sources at all distances, Solar System to z>8
- JWST will dominate at <30µm, including deep pencil-beam surveys
 - ▶ Probing the x-gal universe at z>4 (0.07" at 2µm)
- GSMT in 20s, similar capabilities ~0.005"
- SPIRIT offers ~0.2" at 60µm (close enough)

- Do we explore the same landscape as the wide-field surveys, followup those objects?
 - ▶ Most unlikely to find a redundant universe VIS/FIR
 - ▶ The 20s survey suite is incomplete without FIR
- Do we go for high spatial resolution?
 Complement ALMA, JWST, GSMT with a FIR interferometer?

- Do we explore the same landscape as the wide-field surveys, followup those objects?
 - ▶ Most unlikely to find a redundant universe VIS/FIR
 - ▶ The 20s survey suite is incomplete without FIR
- Do we go for high spatial resolution?
 Complement ALMA, JWST, GSMT with a FIR interferometer?
- In any case, let's not ignore topics "not well suited to FIR", and let's think big picture

The Kepler Orrery III

t[BJD] = 2455215

The Kepler Orrery III

t[BJD] = 2455215

Figure 4.7 This snapshot from a numerical simulation shows the gravitational waves produced by a pair of merging black holes. Credit: Chris Henze (NASA Ames), from a simulation by J. Centrella, B. Kelly, J. Van Meter, and J. Baker (NASA GSFC)

Figure 1.2 Chart of the missions currently planned for launch during the Near-Term Era and of the notional missions of this roadmap for the Formative and Visionary Eras.

The Programmatic Landscape

The Infrared Landscape

