Unlocking the Secrets of Planet Formation with Hydrogen Deuteride

Edwin Bergin University of Michigan

Collaborators

Cecile Favre

Fujun Du

Ilse Cleeves Kamber Schwarz

Geoff Blake - Caltech

The Ingredients for a Habitable World

at right distance from star

liquid water

volatile elements (CHON)

This Talk

- protoplanetary disk gas masses
 - ➡ detection of HD in TW Hya + 2 other sources
- depletion of oxygen and carbon in upper atmosphere of TW Hya
 - pointing to hidden volatile-rich pebbles or planetesimals
- Future surveys of HD with sensitive Far-IR telescope will provide grounding and unique information.
- Tremendous synergy with JWST results and ALMA

Protoplanetary Disk Gas Mass

- Critical for timescales and physics of planet formation
- Linchpin for determination of chemical abundances
- Cannot trace H₂ directly need to use proxies
 - thermal emission from dust grains at mm/sub-mm
 - thermo-chemical modeling of CO gas emission

Protoplanetary Disk Gas Mass

τ = κσ

- κ = dust mass
 opacity
- $\Rightarrow \sigma = mass column density of grains$
- the dust and GAS
 mass is uncertain perhaps by a large
 factor

Draine 2006

Thermo-chemical Models

- Models of the coupled disk thermal physics and chemistry
- ➡ predict and match observed line emission of a variety of species (CO, ¹³CO, O I, ...)
- ➡ Two models of the closest and best studied object - TW Hya - Gorti et al. 2010, Thi et al. 2010

Herschel Detection of HD towards TW Hya

➡ HD is a million times more emissive than H₂ at T ~ 20 K.

➡ Atomic D/H ratio inside the local bubble is well characterized (~1.5 x 10⁻⁵)

 \rightarrow HD will follow H₂ in the gas

Bergin et al. 2013

HD and Disk Gas Mass

Emission is strongly sensitive to gas temperature:

$$M_{gas} \propto \frac{F_l}{x(HD)} D^2 \exp\left(\frac{128.5K}{T_{gas}}\right)$$

Does not trace T_{gas} < 20 K because J = 1 state is not populated

TW Hya Disk Mass

- ➡ M_{gas} = 0.003 M_☉ -HD line flux a factor of 20 too low
- ➡ M_{gas} = 0.060 M_☉ -HD line flux a factor of 2 below observed
- ➡TW Hya disk mass M_{disk} ~ 0.05 M_☉

Bergin et al. 2013

Limited HD Survey

McClure et al. 2015, in prep.

Oxygen in TW Hya

Oxygen in TW Hya

10³⁰

Debes et al. 2013

Thermo-Chemical Model Du & Bergin 2014

- adopt physical model of gas and dust distribution fit the dust SED
- solve (2D) dust radiation transfer
- propagate UV (continuum/Ly α) and X-ray photon solve in concert with H₂ & H₂O (Bethell & Bergin 2011)
- solve coupled chemistry (> 500 species and > 5000 reactions) and thermal physics
- predict emission lines (non-LTE approx)
- include HD to constrain mass

Constrained Disk Chemistry

Re-examine all TW Hya Data with knowledge of HD use new thermochemical model (Du and Bergin 2014)

> $C^{+2}P_{3/2} - {}^{2}P_{1/2}$ $O I ^{3}P_{1} - ^{3}P_{2} + ^{3}P_{0} - ^{3}P_{1}$ CO 2-1, 3-2, 6-5, 10-9, 23-22 ¹³CO 2-1, C¹⁸O 2-1 HD 1-0 (detection) + HD 2-1 (limit) H2O (Spitzer/IRS, Herschel/PACS, Herschel/HIFI) OH (Spitzer/IRS) Du, Bergin, & Hogerheijde 2015, in prep.

Physical Structure

<u>Two models</u> 1. O + C depletedbeyond snow lines 2. O +C undepleted Main elemental carriers -O: H₂O (ice and gas), CO, C: CO (ice + gas), organics

Water Abundance undepleted O

Water Abundance undepleted O

 I. Hot water chemistry and ice evaporation - balanced by exposure to stellar irradiation

 Water ice dominated beyond snow line (4 AU for TW Hya) no ice evaporation in midplane

 Photodesorption layer -UV radiation must be present

Water Abundance depleted O

- Need to remove
 water ice from
 layers with UV (i.e.
 reduce photodes.
 efficiency)
- Also in 5-20 AU need to reduce available O to form water via gas phase reactions

What about Carbon?

HD and C¹⁸O in TW Hya

- Favre et al. 2013
 - Emission ratio F_{J=2-1}(C¹⁸O)/F_{J=1-0}(HD) is proportional to the CO abundance
 - assuming optically thin, D/H ratio, ¹⁶O/¹⁸O ratio, and gas temperature
 - Excitation
 - **—**HD will not emit if $T_{gas} < 20 \text{ K}$
 - **—**CO freezes onto grains if $T_{gr} < 20$ K
 - ➡ CO Abundance < 10⁻⁵ (+ same result from 2 additional independent models)

CO Snowline ALMA C¹⁸O J = 6-5

Direct detection of CO snow line

Needs reduced CO abundance in inner disk Schwarz et al., in prep.

Systematic Effect

- Cold water emission survey
 - ➡ 7+ systems surveyed no detections beyond TW Hya and HD100546 (Du et al., in prep.)
- C⁺ detected in 27% out of 47 T Tauri stars surveyed by Herschel -- all have UV excess (Dent et al. 2013)
- O I less emissive compared to continuum in sample of 21 transition disks (Keane et al. 2014)
- ALMA observations of C I find evidence for missing carbon (Tsukagoshi et al. 2015)

Possible Mechanism

Possible Mechanism

- radial + vertical
 pressure
 gradients
- dust settling + growth + radial drift
- sequesters
 volatiles in
 midplane
- particles must
 be large enough
 to frustrate
 feedback

Summary

- Survey of HD emission in disks using a sensitive Far-IR telescope is central to science case for a future instrument
- Could survey hundreds of systems and obtain real statistics.
- Resolved data in closest systems could provide information on mass distribution.
- HD emission and its constraint on mass unlocks ability to explore chemical composition - can track implantation of volatiles, D/H ratios, etc.
- Inferring systematic effects in one system with wide ranging implications.

Possible Mechanism

- Planet formation step #1 settling of dust to midplane.
- Ice coatings facilitate coagulation increases settling to a dust-rich midplane, followed by radial drift
- Beyond snow-lines icy pebbles and eventually planetesimals form - depleting volatiles from the emissive surface layers.
- Must happen at some level but details have not been explored.

direct astronomical detection 0.1 µm

indirect astronomical detection (gaps/rings) direct detection (accretion luminosity)

pebbles to rocks (cm to km size)

planetesimals

planetary embryos (lunar to Mars sized)

Implications

- Volatile depletion signature of formation of ice-rich pebbles, perhaps planetesimals
- Can track ingredients of habitable worlds
- Measurements of gas-dissipation or mass from species such as CO trace are intertwined with planetesimal formation timescale
- Mass constraints from HD are central to breaking degeneracies

New ALMA Data

$p-H_2O 33 \mu m$ (depl. O)

o-H2O 179 µm undepleted O

o-H2O 179 µm depleted O

O I 63 µm undepleted O

O I 63 µm undepleted O

Increasing Hard X-ray Flux

What does this mean?

- One disk -- has HD to underpin mass -- has depleted
 C and O in upper layers
- Infer missing C and O in rocks
- Solar system: "thermal modeling predicts that large (> 5– 7-km-radius) fully undifferentiated bodies must accrete most of their masses after ~1.5 Myr after CAI formation, fully differentiated bodies must complete most of their accretion before ~1.5 Myr after CAIs" (Weiss & Elkins-Tanton 2013)
- Conclusion: locking of ices in large planetesimals must happen - and it happens early.

Dust Distribution

constrains dust physical structure

UV Radiation Field

- Accretion generates
 UV radiation
- ➡ water is dissociated by photons with 912 -2000 Å
- Disks have strong Ly α radiation field
- X-rays are also important

Bergin et al. 2003

UV Propagation

Bethell & Bergin 2011

Physical Picture: Propagation of Lyman α Radiation

dust optical suitave Ly & RADIATION SCATTERS JOTROPICALLY

H2

Our constrained of the stroying Ly α
Difference in scattering of Ly α radiation and UV continuum
Ly α has greater penetration

Ly & Radiation Transfer

Bethell & Bergin 2011

Dependence on Inner Cavity Radius

[OI]63 (warm gas) and continuum detection rate vs time

W. Thi - Universe Explored by Herschel

Protoplanetary Disk Gas Mass

Complications

➡ H₂ is does not emit for typical temperatures (20 K) that characterize the disk mass reservoir

Proxies

- thermal emission from dust grains at mm/sub-mm wavelengths
- thermo-chemical modeling of gas emission, primarily CO and isotopologues

Water Distribution

Implications

Cosmochemical Record

- Hf-W dating of iron meteorites
 - ➡ differentiation occurred < 1.5 Myr after CAI formation (Kleine+ 2005, Qin+ 2008, Kruijer+2014)
- Requires many-km sized bodies heated by ²⁶Al
 - differentiation is not
 instantaneous
 - accretion age estimates
 of parent body are ~0.1
 0.5 Myr

Williamette Meteorite (Iron)

- TW Hya has a massive gas disk
- many times MMSN
- other systems are underestimated?

Bergin et al. 2013

Andrews et al. 2009

 $\implies Mass (gas + dust) = F_{v}D^{2}/\kappa_{v}B_{v}[T(r)]$

 \Rightarrow at sub-mm wavelengths - Mass $\propto F_v/\kappa_vT$

Deuterium Abundance

from atomic D & H (Friedman et al. 2006) from HD & H₂ (Neufeld et al. 2006)