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Early History of Observations of [CII] 
158 µm Fine Structure Transition 



Why is C+ Important? 

•  C+ is the dominant ionization state of carbon in neutral 
atomic gas (WNM/CNM) and in the outer layers of 
molecular clouds (PDRs) 

•  Possibly good tracer of “CO-dark H2 gas” 

•   Under conditions in much of the neutral ISM, the C+ fine 
structure line is the dominant gas coolant; this is evident in 
infrared spectra of galaxies where LCII ~ 1% of LIR 

•  C+ is also emitted from ionized gas (WIM and HII regions) 



GOT C+ Survey of Milky Way (W. Langer PI)  
(b = 0o and strips to ±1o) 

 
Variety of spectra; to interpret you need CO and HI (at least) 

 

[CII] with strong CO èPDR	


C+ excited by H2	



[CII] with HI only è CNM	


C+ excited by H0	



[CII] with no CO and HI Self-
Absorption è ??	
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Where is [CII] Emission Produced? 

H+/C+	



H+, RRL, [CII]	



Langer et al. (2013) 

Carbon is ionized by photons with hν>11.3 eV 
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What do we need to know to model CII 
Emission? 

•  C+ atomic parameters (A-value, energy levels) 

•  Physical conditions (density, temperature) 

•  Collision partners/collisions rates 

 

Solve equations of statistical equilibrium for two-level system, 
taking into account geometry, temperature gradients, velocity 
fields, background radiation, etc.  



C+ Fine Structure Level Parameters 
•  12C+ has nuclear spin 0 so there is only a pair of levels with J 

= 3/2 and J = 1/2 

•  Aul = 2.4x10-6 s-1            

•  ΔE/k = 91.25 K 

•  f = 1900.537 GHz (12C+) 

•  λ = 157.75 µm (12C+) 

•  13C+ has I = ½ so that 2P1/2 is split into F = 0 and F = 1, while 
2P3/2 level is split into F = 1 and F = 2 è  3 HFS transitions 

Transition F’ –F’’ Freq (GHz)# Δv (km/s)* 
Relative to 12C+ 

Relative 
Intensity** 

2 – 1	

 1900.466	

 -11.2	

 0.625	



1 – 1	

 1900.136	

 -63.2	

 0.250	



1 – 0	

 1900.950	

 +65.2	

 0.125	



#Cooksy et al. (1986)	


*Stacey et al. (1991)	



**Ossenkopf et al. (2013)	





Collisional Excitation of C+ 

Depending on the region, the C+ fine-structure transition may be 
excited by collisions with electrons (HII/WIM), H atoms (CNM/
atomic clouds), or H2 (translucent clouds/ ’’CO-dark H2 gas’’/PDRs) 

	



e- : Rul = 8.7x10-8(Tk/2000)-0.37  
[Blum & Pradhan ’91] 
H0 : Rul = 7.6x10-10(Tk/100)0.14  

[Launay & Roueff ‘77, Barinovs ’05] 
H2: Rul = 3.8x10-10(Tk/100)0.14  

[Chu & Dalgarno ’75, Flower 1990] 
	



A convenient parameter is the 
collisional deexcitation rate 
coefficient Rul (cm3 s-1) 
Depends on the collider and 
kinetic temperature, Tk   
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Critical Densities for C+ 

Goldsmith et al. (2012) based on other references 

nc = Aul/Rul 

Cul = Rul*colliding particle density 
 

Collisional deexcitation rate @ critical density = Spontaneous decay rate  

C+ will not necessarily be in LTE	





Calculating Excitation 
Two levels so only a single 

rate equation 

Excitation temperature 

Definitions 

Use escape probability and LVG 
model to define effective decay rate 

Solution for  Tex 



Characterization of Emission 
Regimes 

τ	


n	



Optically thick but sub-
thermal =>effectively 

optically thin 
	



Optically thin, subthermal 
limit  

Optically thick, thermal 
emission 

Optically thin, thermal 
	





Emission Regimes:  
Dependence on N(C+) 

τ	


n	



TA∝Clu(n,Tkin)N(C+) TA∝N(C+)/(2 + e92/Tkin) 

TA∝Clu(n,Tkin)N(C+) TA∝92/(e92/Tkin  - 1) 

Effectively Optically Thin (EOT) 

Optically Thin, Thermalized 

Optically Thick, Thermalized 

Optically Thin, Subthermal 



Optically Thin Emission 

•  Optically thin emission per 
unit column density as a 
function collision rate for 
several Tkin & background 
temperatures 

•  Subthermal and 
thermalized régimes are 
evident 

•  Background reduces the 
value of TA                     
This is not likely to be a major 
factor for Galactic observations but 
could be for Era of Reonization C+ 
observations;  TCMB ~ 30 K 

dashed curves include 40 
K background	





Optically Thick Emission 

•  As long as X = C/βA 
<1, TA is proportional 
to optical depth, even 
though the transition is 
optically thick 

•  For X>>1, TA reaches 
TB of the kinetic 
temperature 



TA as Function of N(C+) for Different 
Densities 

•  Effectively optically-thin 
(i.e. TA∝N(C+)) as long 
as line is “weak”, with  
TA < TB(Tkin)/4 

•  Where: in the CNM, 
where n/ncr~10-2; τ < 
many 

•  Where:  in “moderate” 
PDRs where n/ncr ~ 
0.1-0.5; τ < few 

No-Excitation Optical Depth α Col.Dens./Line Width 



GOT C+ Observations: 
Lines are Generally Weak 



Distribution of Antenna 
Temperatures from GOT C+ 

•  Red curve indicates 
radiometer noise 

•  99% of spaxels have       
TA ≤ 5 K 

•  In the absence of 
severe beam dilution, 
these are all in the thin 
or effectively-thin limit 



Summary and Implications 
•  Most [CII] emission is optically thin or in the effectively 

optically thin (EOT) limit, simplifying analysis of emission 

•  Velocity resolved emission from the Galactic plane traces all 
(or nearly all) the C+ column density  

•  Averaged over an entire galaxy, [CII] traces the mass of the 
CNM + PDRs in some combination which needs to be 
unraveled to analyze star formation in external galaxies 

•  You need to know n rather well to model [CII] emission 
accurately  

•  T is less critical given expected conditions in [CII]-emitting 
regions, but cold gas could be relatively easy to miss – a 
possible concern 


