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Figure 17. Spitzer IRAC PRFs at 3.6, 4.5, 5.8, and 8.0 µm. The PRFs were generated by the IRAC team from bright calibrations stars observed at several epochs. The
PRFs are displayed using a logarithmic scaling to highlight their differences in each bandpass.

effects may be needed in each of the four IRAC bands. Both the
3.6 and 4.5 µm channels of the IRAC instrument are shortward
of the Spitzer 5.5 µm diffraction limit (Gehrz et al. 2007) and
exhibit undersampled PRFs whose shape changes as the stellar
centroid moves from the center to the edge of a pixel causing
intrapixel sensitivity variations. The PRFs in the 5.8 and 8.0 µm
channels of the IRAC instrument exhibit a more Gaussian-like
shape that is better sampled by the detector resulting in only
small intrapixel sensitivity variations.

Ideally, we would like to account for these changes in the PRF
in our photometric measurements. We cannot make a direct
determination of the exact shape of the PRF as a function of
pixel position, but we can measure the normalized effective-
background area of the PRF (β̃), which is also called noise pixels
by the IRAC Instrument Team. If we assume the measured flux
in a given pixel (Fi) is given by

Fi = F0Pi (A1)

where F0 is the point source flux and Pi is PRF in the ith pixel.
The noise pixel parameter, β̃, is given by
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since F0 can be assumed to be constant. The numerator in
Equation (A2) is simply the square of the PRF volume (V)
and the denominator is the effective background area (β).
These quantities are related to the sharpness parameter, S1, first
introduced by Muller & Buffington (1974) for constraining AO
corrections by

β̃ = βV 2 = 1
S1

. (A3)

The S1 parameter describes the “sharpness” of the PRF and can
range from zero (flat stellar image) to one (all the stellar flux in
the central pixel).

As discussed in Mighell (2005), the S1 parameter is related
to the standard deviation (σ ) of the PRF by

S1 = 1
C1σ 2

(A4)

where C1 is a constant that depends on the sampling of the PRF
on the detector. From Equations (A4) and (A3) it can be shown
that

σ ∝
√

β̃. (A5)

For both the 3.6 and 4.5 µm data we measure β̃ with the same
circular aperture sizes used to determine the stellar centroid
position.

We find that β̃ can serve two purposes in improving the
signal-to-noise of the 3.6 µm observations. First, using a circular
aperture with a radius proportional to

√
β̃ reduces the overall

variations in raw unbinned flux from ∼5% to ∼2%. Harris
(1990) and Pritchet & Kline (1981) note that the optimal
aperture radius for a circularly symmetric Gaussian with a
standard deviation of σ is r0 ≈ 1.6 σ , which is similar to our
optimal aperture radius r0 ≈ σ ≈

√
β̃. Second, we find that

using
√

β̃ as an additional spatial constraint in the intrapixel
sensitivity correction at 3.6 µm can improve the accuracy, as
defined by the standard deviation of the residuals, in our final
solution by ∼1%–2%. We find that using β̃ as an additional
constraint for the 4.5 µm observations does not significantly
improve the accuracy of our results. This is not surprising since
the IRAC 4.5 µm channel is closer to the Spitzer diffraction
limit of 5.5 µm (Gehrz et al. 2007). We also find that β̃ does
not vary with stellar centroid position in the 5.8 and 8.0 µm
observations, which are longward of the Spitzer of the diffraction
limit.

APPENDIX B

INTRAPIXEL SENSITIVITY CORRECTION

The 3.6 and 4.5 µm channels of the Spitzer IRAC instrument
both exhibit variations in the measured flux that are strongly
correlated with the position of the star on the detector (Figures 1
and 2). These flux variations are the result of well documented
intrapixel sensitivity variations that are exacerbated by an
undersampled PRF (e.g., Reach et al. 2005; Charbonneau et al.
2005, 2008; Morales-Calderón et al. 2006; Knutson et al.
2008). The most common method used to correct intrapixel
sensitivity induced flux variations is to fit a polynomial function
of the stellar centroid position (Reach et al. 2005; Charbonneau
et al. 2005, 2008; Morales-Calderón et al. 2006; Knutson et al.
2008). This method works reasonably well on short timescales
(<10 hr) where the variations in the stellar centroid position are
small (<0.2 pixels). Recently, studies by Ballard et al. (2010)
and Stevenson et al. (2012) have implemented non-parametric
corrections for intrapixel sensitivity variations by creating pixel
“maps,” which give a smaller scatter in the residuals compared
with parametric models in most cases.

The pixel mapping method of Ballard et al. (2010) uses
a Gaussian low-pass spatial filter to estimate the weighted
sensitivity function given by

W (xi, yi) =
∑n

j ̸=i Ki(j ) × F0,j∑n
j ̸=i Ki(j )

(B1)
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The scatter in centering results indicates the precision,
but not the accuracy, of a centering technique when used
on real data. To assess accuracy (robustness against
systematic o↵sets) we created synthetic datasets with
known centers, varying S/N and center location within a
pixel.

2.1. Synthetic Data

We created three synthetic data sets, one based on the
IRAC 8.0 µm channel point response function (PRF),one
on the IRAC 3.6 µm channel PRF, and the third on
a Gaussian distribution with parameters chosen to ap-
proximate the PRF, each oversampled by a factor of one
hundred. A PRF is analogous to a PSF, but includes the
inherent wavelength-dependent sensitivity of the pixels
on the detector as well as the optical distortion. With
the PRF we are able to model real observations, while
the Gaussian represents a common, if not perfectly jus-
tified, approximation to a PSF that is easy to calculate
and su�cient for our purposes. It is important to note
that the values obtained using these distribution func-
tions are specific only to the functions used. Other dis-
tribution functions, which may vary in shape, degree of
sampling, or detector response per pixel, will necessarily
have di↵erent quantitative results. We use these three
functions to look at the qualitative di↵erences and per-
formance of each centering routine on idealized and real
distribution functions.
We shifted the three oversampled distribution kernels

in a 21⇥21-position grid with shift steps of 5 sub-pixels.
This produced 441 di↵erent images. The Gaussian ker-
nel was then averaged such that the subpixels fell within
original full-pixel boundaries to simulate light falling
onto the detector in slightly di↵erent locations, while the
PRFs were downsampled according to the procedure laid
out in the IRAC handbook (IRAC Instrument and In-
strument Support Teams 2013). These frames reflect the
PSF in di↵ering pixelation senarios. For each of these
binned kernels, we applied normally distributed noise on
a per-pixel basis. In order to determine the per-pixel
variance for each Gaussian distribution, we solved the
standard charge-coupled device equation (Equation 1)
for a signal level I, with a given background (bg), de-
tector noise (�

d

), and number of pixels (n
pix

), such that
the per-pixel intensity and additional sources of error
when summed satisfy the equation for a given S/N. The
units on I and bg are both number of photoelectrons
per observation. We make note that in this investigation
the background (bg) encompasses all di↵use sources such
as zodical light and galactic nebulae. This process was
repeated seventy-five times to generate a statistically sig-
nificant sample size. Finally, we varied the S/N to inves-
tigate the e↵ect that di↵erent observing conditions may
have on centering.
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Altogether we had three data sets, Gaussian and two
PRFs, with 19 S/Ns, each with 441 subpixel locations
containing 75 frames with separately drawn random
noise, for a total of 1,256,850 samples.

2.2. Methods and Analysis

In aperture photometry, we wish to maximize the num-
ber of photons that come from the body of interest, while
minimizing those contributed by the background. This
normally involves considering all flux within a certain re-
gion to be flux from the object. This leads to the issue of
determining the center of the region of interest from the
finite sampling provided by detector pixels. Below we
discuss three methods, all of which solve this problem,
but di↵erently.

2.2.1. Center of Light

Determining the center of a distribution using the
center-of-light method is computationally and conceptu-
ally straightforward. The functional form is the same as
that for center of mass,
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where m
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is the “mass” or weight at each point, and y

i

,

and x

i

are the distances of the points away from the ori-
gin in the y and x directions, respectively. This performs
an average in each dimension weighted by the amount of
“mass” present at each location, resulting in the center
location about which the mass is distributed. In this
case, however, the “mass” at each point is the flux con-
tained in a given pixel. This method is also commonly
known as centroiding. However, a center-of-mass calcu-
lation is only equivalent to a geometric centroid when the
object has constant density, such as determining the cen-
ter for an irregularly shaped but uniformly dense block.
Since this is not the case for a stellar image, as the
amount of mass (light) per unit volume (pixel) is not
constant, we avoid the term in this paper.
The major advantage to this centering routine is that

it assumes no inherent distribution of the light. As a
result, it works for irregular shapes; however, this is also
its weakness. By assuming nothing about the object’s
shape, the routine is very sensitive to the noise in the
image. Where a nearby warm pixel might not seriously
a↵ect a Gaussian fit, it would weight the center-of-light
away from the true center.

2.2.2. Gaussian Centering

Assuming that the PRF combined with noise is axially
symmetric, it is possible to derive sensible centers by
modeling it with a two-dimensional (2D) Gaussian,

G = Ae
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where A is a scaling constant, x and y are the position
of a pixel, µ

x

and µ

y

are the true positions of the source
in x and y, and the variances in x and y are given by
�

2
x

, �2
y

. Because the center is found by fitting an ana-
lytic function, this routine is fairly robust against low
variations, or a small number of larger variations, due to
noise. However, by assuming the distribution function
is symmetric, this routine will produce inaccurate cen-
ters when the distribution is asymmetric. This deviation
may arise from insu�cient signal, asymmetric pixelation,
speckles, or an inherently asymmetric PRF.

2.2.3. Least Asymmetry
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ber of photons that come from the body of interest, while
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where A is a scaling constant, x and y are the position
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. Because the center is found by fitting an ana-
lytic function, this routine is fairly robust against low
variations, or a small number of larger variations, due to
noise. However, by assuming the distribution function
is symmetric, this routine will produce inaccurate cen-
ters when the distribution is asymmetric. This deviation
may arise from insu�cient signal, asymmetric pixelation,
speckles, or an inherently asymmetric PRF.

2.2.3. Least Asymmetry
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Figure 1. Asymmetric image for which the center is to be deter-
mined. The asymmetry value will be calculated for each pixel in
the shaded region near the center of the image.

Least asymmetry was originally devised by James
Gunn (Princeton University) for use in radio astronomy.
Russell Owen (University of Washington) then used it in
a software package1 to drive the pointing of telescopes,
but did not explore it much further. In personal com-
munications with Owen, he shared the methods, back-
ground, and algorithm with us. A non-exhaustive search
through the literature did not produce references, so we
present the full algorithm here with examples.
Up to this point, we have discussed determining centers

using a weighted average and minimizing a functional
model. Least asymmetry accomplishes centering by first
performing a transformation on the data to produce a
new space with di↵erent properties, similar in idea to a
2D cross correlation.
We begin with an asymmetric distribution that is a

result of the optical aberrations in the system as well as
the presence of noise in the measured signal. Figure 1
depicts such an asymmetric signal. We propose that the
center is the point about which the distribution is most
symmetric. We define the asymmetry of the signal as a
function of position as

A(x, y) =
RX

0

V ar(�(r)) ⇤N(r), (4)

where the discrete index r indicates the particular ra-
dial bin, Var is the variance operator, � is the flux,
and N(r) gives the number of pixels at a given radius
for weighting. Equation 4 produces a new space that is
more normally and symmetrically distributed, as demon-
straited by our results when fitting a Gaussian to the
flux space vs asymmetry space. In principle, if this were
a continuous dataset, we could continue this process un-
til the point of minimum asymmetry was absolutely de-
termined. Because datasets collected using imaging ar-
rays are discretely sampled, we take advantage of the
increased symmetry and use established centering rou-
tines to determine the point of minimum asymmetry to
sub-pixel accuracy.

1
http://www.astro.washington.edu/users/rowen/PyGuide/Manual.html

Figure 2. Asymmetric image with thatched region to indicate the
region of transform for the dotted pixel

To determine the point of minimum asymmetry, we
calculate the value of asymmetry about each pixel in the
shaded region in Figure 1. The calculation begins by lay-
ing an aperture about a given pixel as indicated in Figure
2. This region, which we note extends outside the win-
dow undergoing transformation, is used to create a radial
profile, (see Figure 3), with discrete radii corresponding
to the pixel centers, as shown in Figure 4. The radial
profile for the particular pixel shown in Figure 2 is given
in Figure 5. Because we only choose radii corresponding
to pixel centers, the radial bins are groupings of points at
discrete distances. As a general example of asymmetry,
Figure 3 shows profiles corresponding to low (top) and
high (bottom) asymmetry.
The generated radial profile is used in conjunction with

Equation 4, to calculate the value of asymmetry. We re-
peat this process for each pixel in the conversion window
to produce the asymmetry values depicted in Figure 6.
Finally, we use a traditional centering method in asym-
metry space to determine the center with sub-pixel ac-
curacy. In our cursory tests, we determined Gaussian
centering performed better than center of light.
It is improper to do photometry on Figure 6 as the

values correspond to sums of variances and not flux val-
ues. The figure does not represent a cleaned up image
but is merely an array representation of the distribution
of asymmetry values of the original image. The center as
determined from this distribution must be used in flux
space to determine photometric measurements.

3. RESULTS

We applied the three methods to our three synthetic
datasets to determine which performed the best under
di↵erent circumstances. Although specific values di↵ered
between the two PRFs, qualitatively the results are sim-
ilar. As we are more concerned with the qualitative re-
sults of the centering routines we will present only the 8
µm results in this section for comparison. Similar figures
for 3.6 µm are available in Appendix 6.
To test the precision and accuracy of these routines, we

ran each method against the synthetic data described in
Section 2.1 to produce calculated x and y values for each
frame, a total of over 3.6 million centering calculations.
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Supplementary Figure 1. Three centring methods track the vertical position of GJ 

436b for a small portion of the 3.6 Pm data.  For this dataset, the Gaussian centring 

method most precisely tracks the spacecraft pointing.  Small pointing oscillations occur 

on a ~5-second timescale.  Gaps occur every 64 frames as the camera transfers data to the 

spacecraft's data system. 

www.nature.com / nature 3

IRAC CH1 - GJ 436

Stevenson et al. (2010)
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Figure 3. Stellar radial profiles. Top: When the profile is cen-
tered on the star, the variance in each radial bin is small, indicating
low asymmetry. Bottom: When the profile is centered five pixels
from the stellar center, the variance in each bin is high because
the light is asymmetrically distributed about this point. The least
asymmetry method works by minimizing the sum of the variances
in all of the radial bins.

Figure 4. Radii used to generate radial profile in the region of
transformation.

To compare results we create images, see Figure 7, in
which the axes correspond to the sub-pixel location and
the values correspond to the figure of merit: the mean
distances of the position residuals.
Tables 1 and 2 summarize these data. The values pre-

Figure 5. Radial profile corresponding to our region of transfor-
mation. Red numbers correspond to the labels of radii shown in
Figure 4

Figure 6. Image of asymmetry space for the region converted
from Figure 1.

sented are the average over all subpixel locations, indi-
cating the total expected error. The optimum method at
each S/N is shaded gray.
Table 1 gives the results for centering the Gaussian ker-

nel. Least asymmetry performs the best in the noisiest
conditions, and Gaussian centering performs best at high
S/N. This is expected given that the distribution is con-
structed from a Gaussian kernel. At low S/N, Gaussian
fitting and center of light are more easily thrown o↵. In
the case of least asymmetry, however, the transformation
converts to a space that is more normal, so the signal in
the asymmetry space is stronger. As the signal continues
to increase in strength, fitting a Gaussian becomes more
accurate at a rate faster than that of asymmetry. Center
of light not only performs the worst in all cases, but its
accuracy improves at a rate much slower than that of the
other two routines.
The deviation of the Spitzer 8 µm PRF from normal

is evident in Table 2. For the lowest-S/N scenarios the
distribution deviates furthest from normal and fitting a
Gaussian in flux or asymmetry space is out-performed

Lust et al., ApJ submitted

Testing Centroiding Methods
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6. FIGURES AND TABLE OF IRAC 3.6 µM ANALYSIS

Table 3
3.6 µm PRF Kernel Mean Positional Error (Pixels)

S/N Asymmetry Gaussian Center of Light
1.0 0.606 68.9433 0.4466
2.0 0.203 0.8195 0.4355
3.0 0.1556 0.2031 0.4249
4.0 0.1427 0.1599 0.4147
5.0 0.1369 0.1476 0.405
6.0 0.1337 0.1426 0.3957
7.0 0.1318 0.1395 0.3868
8.0 0.1305 0.139 0.3783
9.0 0.1295 0.1371 0.3701
10.0 0.1288 0.1362 0.3618
20.0 0.1264 0.1334 0.2972
30.0 0.1259 0.1325 0.2509
40.0 0.1256 0.1324 0.2162
50.0 0.1255 0.1326 0.1894
60.0 0.1254 0.1322 0.1682
70.0 0.1254 0.1321 0.1511
80.0 0.1253 0.132 0.1371
90.0 0.1253 0.132 0.1255
100.0 0.1253 0.1319 0.1255

Figure 10. Goodness of centering in sub-pixel space. Results for Least Asymmetry (top left), Gaussian (top right), and center of light
(bottom left) for the 3.6 µm PRF at S/N 10. Blue represents better centering, red worse. The cross pattern arises from a combination of
a pixelation e↵ect and the non-uniformity of the PRF.

5

Figure 7. Centering quality in sub-pixel space for least asymme-
try (top), Gaussian (center), and center of light (bottom) for the
8 µm PRF at S/N 10. Blue represents better centering, red worse.
The cross pattern arises from a combination of a pixelation e↵ect
and the non-uniformity of the PRF.

by center of light, though the centering still has large er-
rors. Once the signal is discernible over the background,
asymmetry is the preferred choice for all of the test cases.
Each of the routines tested all show improvement with
increased S/N, as would be expected, each converging at
di↵erent rates in both precession and accuracy.
Gaussian centering is noticeably lacking throughout

Table 2 because the asymmetric light distribution skews
the Gaussian centering consistently away from the cor-

Table 1
Gaussian Kernel Mean Positional Error (Pixels)

S/N Asymmetry Gaussian Center of Light
1.0 0.4407 20.6187 0.7803
2.0 0.1247 0.5396 0.7601
3.0 0.0845 0.1380 0.7408
4.0 0.0682 0.0778 0.7223
5.0 0.0594 0.0598 0.7060
6.0 0.0538 0.0481 0.6890
7.0 0.0500 0.0406 0.6727
8.0 0.0473 0.0373 0.6570
9.0 0.0452 0.0356 0.6415
10.0 0.0436 0.0336 0.6284
20.0 0.0374 0.0225 0.5096
30.0 0.0357 0.0178 0.4242
40.0 0.0349 0.015 0.3600
50.0 0.0346 0.0141 0.3100
60.0 0.0343 0.0122 0.2702
70.0 0.0341 0.0114 0.2379
80.0 0.0340 0.0103 0.2111
90.0 0.0339 0.0102 0.1883
100.0 0.0338 0.0108 0.1693

Table 2
8 µm PRF Kernel Mean Positional Error (Pixels)

S/N Asymmetry Gaussian Center of Light
1.0 0.8081 89.6562 0.4457
2.0 0.4829 0.8983 0.4343
3.0 0.2332 0.2195 0.4233
4.0 0.1637 0.1714 0.4128
5.0 0.1332 0.1556 0.4028
6.0 0.1158 0.1479 0.3932
7.0 0.1047 0.1427 0.3840
8.0 0.0970 0.1373 0.3751
9.0 0.0916 0.1343 0.3681
10.0 0.0876 0.1305 0.3597
20.0 0.0722 0.1253 0.2925
30.0 0.0685 0.1245 0.2442
40.0 0.067 0.1242 0.208
50.0 0.0662 0.1240 0.1799
60.0 0.0657 0.1238 0.1577
70.0 0.0654 0.1238 0.1396
80.0 0.0651 0.1237 0.1247
90.0 0.0649 0.1236 0.1123
100.0 0.0648 0.1236 0.1019

rect answer. The Gaussian centering routine was very
precise, but not accurate, giving it a larger sum of
squared residuals. This e↵ect is illustrated in Figure
8, where the residuals of Gaussian centering are more
tightly packed than the residuals from asymmetry. If it
could be accurately explored for a given distribution of
light at particular gains and S/Ns, it might be possible
to develop corrections to be used with Gaussian center-
ing to make it more accurate. These corrections would,
however, only be good for the particular PRF, S/N, and
sub-pixel location. In the lowest-S/N cases, least asym-
metry proves to be both more precise and more accurate
than Gaussian centering

4. CONCLUSIONS AND FUTURE WORK

Tables 1 and 2 show which centering methods per-
form better under particular circumstances and are not
intended as a comprehensive guide for which centering
method is the best. A di↵erent PRF will necessarily
have di↵erent results, such as can be seen in Appendix
6.
However, these tables are useful for gaining a general

understanding of these centering routines. First, we note
that centering with asymmetry performs well under a va-

Lust et al., ApJ submitted



IRAC CH1 - Method Compare
mpfit2dpeak.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

0.0

0.1

0.2

0.3

0.4

6
r

unshifted 6X: 0.00777912

unshifted 6Y: −0.0234432

gcntrd.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

0.0

0.1

0.2

0.3

0.4

6
r

unshifted 6X: 0.0405102

unshifted 6Y: 0.0349874

box_centroider.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

0.0

0.1

0.2

0.3

0.4

6
r

unshifted 6X: 0.0546312

unshifted 6Y: 0.0334463

centr_v2.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

0.0

0.1

0.2

0.3

0.4

6
r

unshifted 6X: 0.0599661

unshifted 6Y: 0.0290356

Figure Credit: Syler Wagner



IRAC CH1 - Method Compare
mpfit2dpeak.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
X

unshifted 6X: 0.00777912
unshifted 6Y: −0.0234432

gcntrd.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
X

unshifted 6X: 0.0405102
unshifted 6Y: 0.0349874

box_centroider.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
X

unshifted 6X: 0.0546312
unshifted 6Y: 0.0334463

centr_v2.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
X

unshifted 6X: 0.0599661
unshifted 6Y: 0.0290356

Figure Credit: Syler Wagner



IRAC CH1 - Method Compare
mpfit2dpeak.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
Y

unshifted 6X: 0.00777912
unshifted 6Y: −0.0234432

gcntrd.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
Y

unshifted 6X: 0.0405102
unshifted 6Y: 0.0349874

box_centroider.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
Y

unshifted 6X: 0.0546312
unshifted 6Y: 0.0334463

centr_v2.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
Y

unshifted 6X: 0.0599661
unshifted 6Y: 0.0290356

Figure Credit: Syler Wagner



IRAC CH2 - Method Compare
mpfit2dpeak.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

0.0

0.1

0.2

0.3

0.4

6
r

unshifted 6X: −0.0381660

unshifted 6Y: 0.00284004

gcntrd.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

0.0

0.1

0.2

0.3

0.4

6
r

unshifted 6X: −0.0186033

unshifted 6Y: 0.0580149

box_centroider.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

0.0

0.1

0.2

0.3

0.4

6
r

unshifted 6X: 0.0263224

unshifted 6Y: 0.0310640

centr_v2.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

0.0

0.1

0.2

0.3

0.4

6
r

unshifted 6X: 0.0289965

unshifted 6Y: 0.0284815

Figure Credit: Syler Wagner



IRAC CH2 - Method Compare
mpfit2dpeak.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
X

unshifted 6X: −0.0381660
unshifted 6Y: 0.00284004

gcntrd.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
X

unshifted 6X: −0.0186033
unshifted 6Y: 0.0580149

box_centroider.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
X

unshifted 6X: 0.0263224
unshifted 6Y: 0.0310640

centr_v2.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
X

unshifted 6X: 0.0289965
unshifted 6Y: 0.0284815

Figure Credit: Syler Wagner



IRAC CH2 - Method Compare
mpfit2dpeak.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
Y

unshifted 6X: −0.0381660
unshifted 6Y: 0.00284004

gcntrd.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
Y

unshifted 6X: −0.0186033
unshifted 6Y: 0.0580149

box_centroider.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
Y

unshifted 6X: 0.0263224
unshifted 6Y: 0.0310640

centr_v2.pro

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
radial distance of PRF shift

−0.4

−0.2

0.0

0.2

0.4

6
Y

unshifted 6X: 0.0289965
unshifted 6Y: 0.0284815

Figure Credit: Syler Wagner
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Concluding Thoughts
• Choice of centroiding method generally affects error budget at 
the few percent level	


!

• Choice of centroiding method generally does not affect 
retrieved system parameters (within errors)	


!

• Flux-weighted methods appear most ‘stable’ over a variety 
datasets (centroid location, S/N, etc.)	


!

•Implementation between groups varies ...
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Figure 17. Spitzer IRAC PRFs at 3.6, 4.5, 5.8, and 8.0 µm. The PRFs were generated by the IRAC team from bright calibrations stars observed at several epochs. The
PRFs are displayed using a logarithmic scaling to highlight their differences in each bandpass.

effects may be needed in each of the four IRAC bands. Both the
3.6 and 4.5 µm channels of the IRAC instrument are shortward
of the Spitzer 5.5 µm diffraction limit (Gehrz et al. 2007) and
exhibit undersampled PRFs whose shape changes as the stellar
centroid moves from the center to the edge of a pixel causing
intrapixel sensitivity variations. The PRFs in the 5.8 and 8.0 µm
channels of the IRAC instrument exhibit a more Gaussian-like
shape that is better sampled by the detector resulting in only
small intrapixel sensitivity variations.

Ideally, we would like to account for these changes in the PRF
in our photometric measurements. We cannot make a direct
determination of the exact shape of the PRF as a function of
pixel position, but we can measure the normalized effective-
background area of the PRF (β̃), which is also called noise pixels
by the IRAC Instrument Team. If we assume the measured flux
in a given pixel (Fi) is given by

Fi = F0Pi (A1)

where F0 is the point source flux and Pi is PRF in the ith pixel.
The noise pixel parameter, β̃, is given by

β̃ = (
∑

Fi)2

∑ (
F 2

i

) = (
∑

F0Pi)2
∑

(F0Pi)2
= (

∑
Pi)2

∑(
P 2

i

) (A2)

since F0 can be assumed to be constant. The numerator in
Equation (A2) is simply the square of the PRF volume (V)
and the denominator is the effective background area (β).
These quantities are related to the sharpness parameter, S1, first
introduced by Muller & Buffington (1974) for constraining AO
corrections by

β̃ = βV 2 = 1
S1

. (A3)

The S1 parameter describes the “sharpness” of the PRF and can
range from zero (flat stellar image) to one (all the stellar flux in
the central pixel).

As discussed in Mighell (2005), the S1 parameter is related
to the standard deviation (σ ) of the PRF by

S1 = 1
C1σ 2

(A4)

where C1 is a constant that depends on the sampling of the PRF
on the detector. From Equations (A4) and (A3) it can be shown
that

σ ∝
√

β̃. (A5)

For both the 3.6 and 4.5 µm data we measure β̃ with the same
circular aperture sizes used to determine the stellar centroid
position.

We find that β̃ can serve two purposes in improving the
signal-to-noise of the 3.6 µm observations. First, using a circular
aperture with a radius proportional to

√
β̃ reduces the overall

variations in raw unbinned flux from ∼5% to ∼2%. Harris
(1990) and Pritchet & Kline (1981) note that the optimal
aperture radius for a circularly symmetric Gaussian with a
standard deviation of σ is r0 ≈ 1.6 σ , which is similar to our
optimal aperture radius r0 ≈ σ ≈

√
β̃. Second, we find that

using
√

β̃ as an additional spatial constraint in the intrapixel
sensitivity correction at 3.6 µm can improve the accuracy, as
defined by the standard deviation of the residuals, in our final
solution by ∼1%–2%. We find that using β̃ as an additional
constraint for the 4.5 µm observations does not significantly
improve the accuracy of our results. This is not surprising since
the IRAC 4.5 µm channel is closer to the Spitzer diffraction
limit of 5.5 µm (Gehrz et al. 2007). We also find that β̃ does
not vary with stellar centroid position in the 5.8 and 8.0 µm
observations, which are longward of the Spitzer of the diffraction
limit.

APPENDIX B

INTRAPIXEL SENSITIVITY CORRECTION

The 3.6 and 4.5 µm channels of the Spitzer IRAC instrument
both exhibit variations in the measured flux that are strongly
correlated with the position of the star on the detector (Figures 1
and 2). These flux variations are the result of well documented
intrapixel sensitivity variations that are exacerbated by an
undersampled PRF (e.g., Reach et al. 2005; Charbonneau et al.
2005, 2008; Morales-Calderón et al. 2006; Knutson et al.
2008). The most common method used to correct intrapixel
sensitivity induced flux variations is to fit a polynomial function
of the stellar centroid position (Reach et al. 2005; Charbonneau
et al. 2005, 2008; Morales-Calderón et al. 2006; Knutson et al.
2008). This method works reasonably well on short timescales
(<10 hr) where the variations in the stellar centroid position are
small (<0.2 pixels). Recently, studies by Ballard et al. (2010)
and Stevenson et al. (2012) have implemented non-parametric
corrections for intrapixel sensitivity variations by creating pixel
“maps,” which give a smaller scatter in the residuals compared
with parametric models in most cases.

The pixel mapping method of Ballard et al. (2010) uses
a Gaussian low-pass spatial filter to estimate the weighted
sensitivity function given by

W (xi, yi) =
∑n

j ̸=i Ki(j ) × F0,j∑n
j ̸=i Ki(j )

(B1)
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