

February 3rd Know Thy Star

Shining Light on Granulation: Using Solar Eclipses to Advance Radial Velocity Models

Elizabeth Gonzalez Penn State University

NASA Exoplanet Archive, exoplanetarchive.ipac.caltech.edu, 2025-01-27 06:49:37

Granules: individual magnetoconvective cells comprised of hot upwelling plasma

Intergranular Lanes: rings of cooler, denser downwelling plasma surrounding granules

Granulation Signatures:

- 1. Broadening of lines
- 2. Asymmetry of lines
- 3. Convective blueshift of lines

GRASS II: Simulations of Potential Granulation Noise Mitigation Methods

MICHAEL L. PALUMBO III ^(D),^{1, 2} ERIC B. FORD ^(D),^{1, 2, 3, 4} ELIZABETH B. GONZALEZ ^(D),^{1, 2} JASON T. WRIGHT ^(D),^{1, 2, 5} KHALED AL MOULLA ^(D),⁶ AND ROLF SCHLICHENMAIER ^(D)⁷

¹Department of Astronomy & Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA ²Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA

³Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA ⁴Center for Astrostatistics. 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA

⁵Penn State Extraterrestrial Intelligence Center, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA

> ⁶Observatoire Astronomique de l'Université de Genève, Chemin Pegasi 51, 1290 Versoix, Switzerland ⁷Leibniz-Institut für Sonnenphysik (KIS), Schöneckstr. 6, 79104 Freiburg, Germany

GRASS Procedure:

- Input: measured line bisectors and widths from 22 LARS lines
- Simulation of spatially-resolved stellar disk
- 3. Spatial integration of the model stellar disk

	October 14th, 2023	April 8th, 2024
% Coverage	76%	69%
Start Local Time (Airmass)	8:11AM (2.86)	11:03AM (1.38)
End Local Time (Airmass)	10:05AM (1.33)	12:34PM (1.10)

NEID Observations

- Highly stabilized spectrometer
- High resolution (R~100,000)
- Optical (380 930 nm)
- Baseline RV measurement precision of 27.5 centimeters per second

The Role of A Solar Eclipse

1. Sun-as-a-star Observations

The Role of A Solar Eclipse

- 2. The Rossiter Mclaughlin (RM) Effect:
 - RM curve shape influenced by convective blueshift (CB)
 - CB crucial when modeling Solar RVs during an eclipse

5 2 3 4 6

(sub)grid solar surface

Grid

Orientation compute line of sights from

Eclipse determine eclipsed cells

observer to solar cells

determine differential rotation, differential extinction, and limb

darkening

Astrophysics

GRASS

simulate granulation driven spectra

compute radial velocity

RV

Magnetic origin of the discrepancy between stellar limb-darkening models and observations

Nadiia M. Kostogryz ^{ICI}, <u>Alexander I. Shapiro</u>, <u>Veronika Witzke</u>, <u>Robert H. Cameron</u>, <u>Laurent Gizon</u>, <u>Natalie A. Krivova</u>, <u>Hans-G. Ludwig</u>, <u>Pierre F. L. Maxted</u>, <u>Sara Seager</u>, <u>Sami K. Solanki</u> & <u>Jeff Valenti</u> <u>Nature Astronomy</u> **8**, 929–937 (2024) | <u>Cite this article</u>