Image: Yuri Beletsky

Ages For Exoplanet Host Stars Rotation & Lithium in the Kepler Field

Luke Bouma

Carnegie Fellow @ Observatories February 3, 2025

Relative flux 1.1 1.0 0.9

Time [days]

Wavelength [Å]

Luke Bouma

Evolutionary stories require good ages

Luke Bouma

Open cluster rotation sequences show how stars spin down

Binaries are removed; Fit from 3800 to 6200 K Bouma+2023

Open cluster rotation sequences show how stars spin down

Binaries are removed; Fit from 3800 to 6200 K Bouma+2023

Different ages can produce the same rotation period

Binaries are removed; Fit from 3800 to 6200 K Bouma+2023

Different ages can produce the same rotation period

Binaries are removed; Fit from 3800 to 6200 K

Хö 19a sc-Eri: -681 Curti 20

- 1) Interpolates between clusters 0.08 4 Gyr, FGK (3800-6200 K)
- Fits the scatter Normal + trailing uniform distribution Let uniform distribution converge with ZAMS
- 3) Calculates $p(t|P_{rot}, T_{eff})$ by marginalizing over scatter

- Reproduces <4 Gyr spin-down With the evolving fast fraction! With stalled spin-down!
- ► $P_{\rm rot}, T_{\rm eff} \Rightarrow$ unique age Range of ages dictated by scatter in data

pip install gyro-interp

Current limitations

Assumes single, main-sequence stars

Engle & Guinan 2023 Lu+2024 Saunders+2024

Assumes near-solar metallicities

Amard & Matt 2020 Claytor+2020 See+2024

Kepler detected rotation for ≈one in three of its targets

*P*_{rot}: McQuillan+14, Mazeh+15, Santos+19, Santos+21. *T*_{eff}: Berger+20

Most Kepler Objects of Interest have Keck/HIRES spectra

Li: Fulton+17, Johnson+17, Petigura+17, Berger+18, Bouma+24

We blindly recover ages of known stars in Kepler's open clusters

Young Kepler stars 3-5x rarer than their 3 Gyr counterparts

Young Kepler stars 3-5x rarer than their 3 Gyr counterparts

Kepler's age distribution is a product of both kinematic heating & star formation history

Field ages offer 2-3x expansion for demographics at 0.1-1 Gyr

Field ages offer 2-3x expansion for demographics at 0.1-1 Gyr

The precision limit for rotational and lithium ages is set by intrinsic scatter in open cluster distributions.

- Rotation: gyro-interp (Bouma+23)
- Lithium: *eagles* (Jeffries+23, Weaver+24)
- Calibrated for: single FGK stars at < 4 Gyr near solar metallicity

Youngest Kepler stars 3-5x rarer than stars 3 Gyr old.

- Age distribution product of both kinematic heating and declining SFR
- Unresolved photometric binaries main source of uncertainty

Know thy Galaxy, know thy planet age distribution.

- Rotational ages for ~100 Kepler planets with t < 1 Gyr (Bouma+24)
- Expands 0.1-1 Gyr sample 2-3x for demographic studies
- TESS, PLATO, Roman, & Rubin offer sensitivity to broader populations, young & old.

Image: Yuri Beletsky

Luke Bouma Igbouma.com

bonus

How precise are gyro-interp ages?

How do unresolved binaries affect gyro ages?

gyro-interp (Prot) vs. eagles (Li) age scale comparison They mostly* agree, but not many stars overlap!

Bouma+24 suppl.

gyro-interp (Prot) vs. Hall+21 (astseis) age scale comparison 4/5 agree, heavily influenced by "far from MS" quality flag Bouma+24 suppl.

Regarding the asteroseismic sample: We crossmatched our Table 2 against Hall+2021 (hereafter H21). H21 included 94 stars. The match yielded 27 stars with Teff<6200K and finite gyro-interp ages. Most (20/27) of these stars raise our "far from main sequence" quality flag, based on their location in the logg vs Teff plane – such stars would not be in our default sample in e.g. Figure 6. One star (KIC 10454113) tripped other flags (too luminous; high RUWE), another was flagged a metallicity outlier (KIC 10963065). This left five stars to compare:

adopted_Teff	gyro_median	gyro1sigma	gyro_+1sigma	Prot	Age	e_age_lc	e_Age	Р	Fe_H_
6039	2211.0	631.0	655.0	10.88	2.3936	1.1179	0.9582	38.005288	0.06
6117	2525.0	681.0	536.0	10.76	2.3457	1.0380	0.8464	15.810470	-0.04
6038	2872.0	601.0	480.0	13.85	2.2339	0.2396	0.2396	31.590512	-0.06
5955	2872.0	516.0	475.0	15.51	3.0643	0.7027	0.6548	16.789238	0.11
5589	3975.0	336.0	340.0	27.95	6.6300	0.6200	0.5700	26.062736	-0.18
	adopted_Teff 6039 6117 6038 5955 5589	adopted_Teff gyro_median 6039 2211.0 6117 2525.0 6038 2872.0 5955 2872.0 5589 3975.0	adopted_Teffgyro_mediangyro1sigma60392211.0631.061172525.0681.060382872.0601.059552872.0516.055893975.0336.0	adopted_Teffgyro_mediangyro1sigmagyro_+1sigma60392211.0631.0655.061172525.0681.0536.060382872.0601.0480.059552872.0516.0475.055893975.0336.0340.0	adopted_Teffgyro_mediangyro1sigmagyro_+1sigmaProt60392211.0631.0655.010.8861172525.0681.0536.010.7660382872.0601.0480.013.8559552872.0516.0475.015.5155893975.0336.0340.027.95	adopted_Teffgyro_mediangyro1sigmagyro_+1sigmaProtAge60392211.0631.0655.010.882.393661172525.0681.0536.010.762.345760382872.0601.0480.013.852.233959552872.0516.0475.015.513.064355893975.0336.0340.027.956.6300	adopted_Teffgyro_mediangyro1sigmagyro_+1sigmaProtAgee_age_lc60392211.0631.0655.010.882.39361.117961172525.0681.0536.010.762.34571.038060382872.0601.0480.013.852.23390.239659552872.0516.0475.015.513.06430.702755893975.0336.0340.027.956.63000.6200	adopted_Teffgyro_mediangyro1sigmagyro_+1sigmaProtAgee_age_lce_Age60392211.0631.0655.010.882.39361.11790.958261172525.0681.0536.010.762.34571.03800.846460382872.0601.0480.013.852.23390.23960.239659552872.0516.0475.015.513.06430.70270.654855893975.0336.0340.027.956.63000.62000.5700	adopted_Teffgyro_mediangyro1sigmagyro_+1sigmaProtAgee_age_lce_AgeP60392211.0631.0655.010.882.39361.11790.958238.00528861172525.0681.0536.010.762.34571.03800.846415.81047060382872.0601.0480.013.852.23390.23960.239631.59051259552872.0516.0475.015.513.06430.70270.654816.78923855893975.0336.0340.027.956.63000.62000.570026.062736

Table: Right five columns are from Hall+21 (which sourced ages from Silva-Aguirre+2015's BASTA routine); remaining columns are from this work.

The youngest four stars agree. The older one does not; KIC 3544595 has a 3.8 older t ast than t_gyro (6.6 +/- 0.6 Gyr vs 4.0 +/- 0.3 Gyr).

It is worth checking whether the rotation period and temperature of this latter star is consistent with the interpolation-based gyro age that we quote. The other figure below, which shows the Ruprecht-147 and M67 sequences, suggests that it is.

The implication of this crossmatch, if taken at face value, is that some fraction of our "t_gyro > 3 Gyr" stars could be seismically older, in line with the WMB hypothesis. Section 8.2 includes paragraphs discussing this possibility in greater detail.

github.com/lgbouma/gyro-interp

from gyrointerp import gyro_age_posterior

```
# units: days
Prot, Prot_err = 11, 0.2
```

```
# units: kelvin
Teff, Teff_err = 4500, 100
```

```
# evaluate the age posterior
age_posterior = gyro_age_posterior(
    Prot, Teff,
    Prot_err=Prot_err, Teff_err=Teff_err
)
```


How good is *P*_{rot} ~ *t*^{1/2} ?