Many Elemental Abundances for \sim 17,000 M Dwarfs in SDSS-V

Aida Behmard*

+ Melissa Ness, Andy Casey, Ruth Angus, Katia Cunha, Diogo Souto, Lucy Lu

C, **N**, **O**..

C, N, O...re, Cr...

* = Center for Computational Astrophysics, Flatiron Institute

Fe, Cr...

M dwarfs are very important (for planets!)

Most common stars: ~70% of Solar neighborhood

Best for detecting and characterizing (Earth-like) planets

...popularTESS targets, $\sim 100 \text{ M} \text{ dwarfs in } \text{WST} (Cycles 1-3)$

ΗZ

Image Credit: ESA/Gaia/DPAC

To characterize planets, it's important to measure M dwarf chemistry!

TRAPPIST-1: Si, Fe, Mg...

Planetary atmosphere compositions (e.g., C/O) to formation pathways

planet bulk densities to compositions

Image Credit: ALMA/ESO/NAOJ/NRAO/S. Andrews et al./AUI/ NSF/S. Dagnello

M dwarfs have lots of molecules...

JUUGC

The Cannon Data-driven approach for inferring stellar "labels" from spectra—does not use physical stellar models!

The Cannon was developed by Melissa Ness (ANU), Andy Casey (Monash U.)

The Cannon Works via a 2-step process: "Training Step" *T_{eff},* [X/H] T_{eff}, [X/H]

"Test Step"

Apply flux models to test set spectra derive test labels

Sloan Digital Sky Survey (SDSS-V)

3 sub-surveys: BHM, LVM, MWM

We use Milky Way Mapper (MWM): H-band, R \sim 22,500

SDSS abundance pipeline (ASPCAP) relies on stellar models: only good >4500 K

Training set: FGK-M binaries in SDSS-V ASPCAP is reliable for solar-like stars

binary companions: chemically homogeneous

Leave-one-out cross-validation

*Also have: Al, N, Ca, Cr, Ni - galactic archaeology!

Other tests to verify M dwarf abundances...

Reproduces known abundances of Hyades cluster M dwarfs

Behmard et al. (2025)

M dwarf metallicities reproduce expected tracks from stellar evolution

12

Summary

- Used The Cannon to infer M dwarf abundances for many elements
- Catalog of ~17,000 M dwarfs, ~90 confirmed planets
- Valuable in era of large surveys (e.g., SDSS)
- Can be used for examining star/planet formation

13

The Cannon flux model fitting:

For each pixel in the wavelength range of the spectra:

$f_{jn}(l_n,\vartheta_j)$

J

$l_n = [1, T_{eff}, [Fe/H] ...]$ $\vartheta_i = coefficients$

The Cannon flux model fitting:

"complex vectorizer" function model coefficients

$f_{in} = V(l_n) \cdot \vartheta_i + noise$ $l_n = [1, T_{eff}, [Fe/H]...]$

"Test Step": fit for labels l_n for each star in the test set that best reproduces empirical flux

"Training Step" : fit for model coefficients ϑ_i for each flux model

validation scheme:

ASPCAP metallicities don't!

[dex] [Fe/H]

Performance against Souto et al. (2022) results

Behmard et al. (2025)

Flux model fit examples

Behmard et al. (2025)

Flux model fit examples

