Planets larger than Neptune have elevated eccentricities

Dr. Greg Gilbert (UCLA)

Know Thy Star 2 | 4 Feb 2025 | Pasadena, CA

Solar system planets come in three sizes

Terrestrials $0.4 - 1.0 R_{\oplus}$

Gas Giants $\sim 10 R_{\oplus}$

Ice Giants $\sim 4 R_{\oplus}$

Solar system planets have low eccentricity

Terrestrials $0.4 - 1.0 R_{\oplus}$

Gas Giants $\sim 10 R_{\oplus}$

Ice Giants $\sim 4 R_{\oplus}$

0.05

Solar system planets have low inclination

Terrestrials $0.4 - 1.0 R_{\oplus}$

0.3°

Gas Giants $\sim 10 R_{\oplus}$

0.9°

Ice Giants $\sim 4 R_{\oplus}$

A brief history of the Solar System

Protoplanetary disk forms

t ~ 10⁶ yr

Protostar forms from molecular cloud

Terrestrial planets form

t ~ 10⁸ yr

Giant planets form

 $t > 10^{8} \text{ yr}$

Long timescale dynamical interactions

Dynamical process can either excite or quench inclination and eccentricity

Planet-planet scattering

Disk migration

Giant impacts

Transits provide the greatest statistical power to investigate populations

Imaging

straightforward

small sample (N ~ 10s)

giant planets only

Doppler

high precision

- large sample (N ~ 100s)

 - large planets only

time

Transits

star

light curve

planet

brightness

Exoplanet eccentricities tend to be low but span a range of values

Transits

duration = $\frac{\text{transit chord length}}{\text{orbital velocity}}$

$$T_{14} \approx \frac{PR_{\star}}{\pi a} \sqrt{1-b^2} \frac{\sqrt{1-e^2}}{1+e\sin\omega}$$

duration = transit chord length orbital velocity

$$T_{14} \approx \frac{PR_{\star}}{\pi a} \sqrt{1-b^2} \frac{\sqrt{1-e^2}}{1+e\sin\omega}$$

duration = transit chord length orbital velocity

$$T_{14} \approx \frac{PR_{\star}}{\pi a} \sqrt{1-b^2} \frac{\sqrt{1-e^2}}{1+e\sin\omega}$$

duration = transit chord length orbital velocity

$$T_{14} \approx \frac{PR_{\star}}{\pi a} \sqrt{1-b^2} \frac{\sqrt{1-e^2}}{1+e\sin\omega}$$

Ford, Quinn, & Veras (2008) Dawson & Johnson (2012) Kipping (2014)

$$T_{14} \approx \frac{PR_{\star}}{\pi a} \sqrt{1 - b^2} \frac{\sqrt{1 - e^2}}{1 + e \sin \omega}$$

compare

$$T \leftarrow \text{observed}$$

$$T_0 \leftarrow \text{predicted for}$$

$$e = 0, b = 0$$

Ford, Quinn, & Veras (2008) Dawson & Johnson (2012) Kipping (2014)

$$T_{14} \approx \left(\frac{3P}{\pi^2 G\rho_{\star}}\right)^{1/3} \sqrt{1 - b^2} \frac{\sqrt{1 - e^2}}{1 + e\sin\omega}$$

compare
$$\frac{T}{T_0}$$
 observed
 $e = 0, b = 0$

We developed a method to generate $\{e, \omega\}$ via importance sampling from DR25 chains

Kepler samples

 $\{P, R_p/R_\star, b, \tilde{\rho}\}_i$

 $\{P, R_p/R_{\star}, b, T_{14}\}_i$

 $\{e, \omega\}_i$

Importance samples

Mason MacDougall UCLA PhD

No lightcurve fitting needed!

MacDougall, Gilbert, & Petigura (2023)

We analyzed ~1600 Kepler planets

Sub-Saturns $4-8 R_{\oplus}$

> Jovians $8 - 16 R_{\oplus}$

Sub-Neptunes $R_{\rm gap} - 4 R_{\oplus}$

Super-Earths $1.0 R_{\oplus} - 1.8 R_{gap}$

Sub-Earths $0.5 - 1.0 R_{\oplus}$

~92% of sample is smaller than Neptune

We analyzed ~1600 Kepler planets ℓ, ω No lightcurve fitting needed! Importance ρ★ sampling Importance ρ sampling

Reviewer #2

I don't believe you

We refit 1600 Kepler light curves to address these issues

Impact Parameter

Transit Timing Variations

Stellar Limb Darkening

Model specification and prior choice

Correlated Noise

Introducing the ALDERAAN pipeline Automated Lightcurve Detrending, Exoplanet Recovery, and Analysis of Autocorrelated Noise

www.github.com/gjgilbert/alderaan

Paige Entrican UCLA Undergrad

Project: data visualization software and manual validation of 1600 model fits

www.github.com/pentrican10/alderaan-viewer

We analyzed ~1600 Kepler planets

Sub-Saturns $4-8 R_{\oplus}$

 $R_{\rm gap} - 4 R_{\oplus}$ Super-Earths

Sub-Neptunes

 $1.0 R_{\oplus} - 1.8 R_{gap}$

Sub-Earths $0.5 - 1.0 R_{\oplus}$

~92% of sample is smaller than Neptune

We analyzed ~1600 Kepler planets Importance З ρ★ sampling Importance P★ sampling Importance ρ★ sampling

Individual {e}; posteriors are asymmetric

x 1600

Empirical Histogram

- 25 bins $\rightarrow \Delta e \sim 0.04$
- GP regularization enforces smoothness

 Agnostic to underlying distribution shape

Hogg+ (2010) | Foreman-Mackey+ (2014) Van Eylen+ (2019) | Bowler+ (2020) Masuda+ (2022) | Sagear & Ballard (2023)

1.0

Empirical Histogram

- 25 bins $\rightarrow \Delta e \sim 0.04$
- GP regularization enforces smoothness

 Agnostic to underlying distribution shape

• Peaked at e = 0

• Monotonic

• Peaked at e = 0

 Self-similar across planet sizes

1.0

Eccentricity as a function of planet radius

Eccentricity as a function of planet radius

Small planets have low

Singles and multis have the same $\langle e \rangle - R_p$ relationship

$$\langle e \rangle_{\rm singles}$$

 \leftarrow Singles

← Multis

 $\langle e \rangle_{\rm multis} \approx 2.5$

The population of small planets is demographically distinct compared to the population of large planets

The population of small planets is demographically distinct compared to the population of large planets

Common

Fulton et. al (2017), Fulton & Petigura (2018)

Rare

The population of signal planets is demographically distinct compared to the population of large planets

Common

No [Fe/H] dependance

Buchhave et al. (2012)

Rare

High [Fe/H] host stars

The population of small planets is demographically distinct compared to the population of large planets

Common

No [Fe/H] dependance

Low $\langle e \rangle$

Gilbert, Petigura, & Entrican (accepted to PNAS)

Rare

High [Fe/H] host stars

Elevated $\langle e \rangle$

Eccentricity as a function of period and metallicity

There is an eccentricity peak in the radius valley

Hypothesis #1: Measurement Error

TTVs?

Flux contamination?

Sampler convergence?

Photometric detrending?

Hypothesis #2a: Mergers

Hypothesis #2b: Atmospheric Stripping

Hypothesis #3: Any Ideas?

Please, let's speculate

Planets in the radius gap are weird

Elevated Eccentricity

Non-uniform sizes

Fewer Resonances

High Gap Complexity

The emerging picture of planet formation

 Planets form on nearly circular orl resonance

- High metallicity raises likelihood of forming giant planets
- Systems with giant planets experience greater dynamical excitation
- •Atmospheric mass loss driven by XUV radiation erodes H/He atmospheres of sub-Neptunes, creating the radius gap
- Some sub-Neptunes experience giant impacts, which strip atmospheres and populates the radius gap

Planets form on nearly circular orbits, perhaps in or near mean motion

Next steps — eccentricity as a function of...

- Stellar properties: M_{\star} , T_{eff} , [Fe/H]
 - Mutual inclinations
 - Period ratios
 - Architectural complexity
 - System multiplicity
 - Outer companion status

 - And more!

Eccentricity (and soon inclination) demographics point the way toward better planet formation models

EXTRA SLIDES

Gilbert & Petigura (in review)

Gilbert, Petigura, & Entrican (in review)

Gilbert & Petigura (in review)

Gaia RUWE as a function of R_p rules out stellar contamination

Planet Radius (Earth-radii)

Planet Radius (Earth-radii)

Hierarchical shrinkage produces improved b and R_p estimates

Impact parameters are challenging to measure

 γ

Gilbert (2021)

MCMC samplers get "stuck" at the transition from grazing to non-grazing geometries

Solution: Umbrella Sampling

Torrie & Valleau (1977) | Matthews+ 2018 | Gilbert 2021

gjgilbert.github.io/tutorials/umbrella_sampling/

Hierarchical shrinkage produces improved b and R_p estimates

Why don't we see a strong $\langle e \rangle - [Fe/H]$ correlation?

 $\langle e \rangle - [Fe/H]$ is "diluted" by the abundant population of $e \approx 0$ small planets

0.4

Small planets are common (1 per star)

Large planets are rare $(\sim 10\% \text{ at } [Fe/H] = 0.25)$

Only some large planets have elevated eccentricity (~50%)

Posteriors on b and e are degenerate

Mason MacDougall UCLA PhD

MacDougall, Gilbert, & Petigura (2023)

Photo-evaporation creates the radius valley

Simulation: J. Owen | Animation: E. Petigura

Photo-evaporation creates the radius valley

Simulation: J. Owen | Animation: E. Petigura

