Radius Cliff across Stellar Type Anne Dattilo PhD Candidate, UC Santa Cruz

Know Thy Star, Know Thy Planet 2 — February 2025

2

Observed Planets

Contours/Features/Shapes have Meaning

Yosemite Valley; USGS; 1897

Observed != Intrinsic

Occurrence

Dattilo et al. (2023)

Anne Dattilo — adattilo@ucsc.edu

Dattilo et al. (2023)

The Radius Cliff

Occurrence

Models of the radius valley also produce the cliff!

Atmospheric mass loss (Photoevaporation)

Rogers & Owen 2021

Gas-Poor Formation

The Radius cliff changes in period space

The Radius cliff changes across stellar type

The Radius cliff changes across stellar type

The Radius cliff changes across stellar type

How is the cliff changing?

Occurrence gradient in each period bin

FLAT

በ በ5

There is a clear trend in period for different stellar types

- The steepest slope of the cliff moves to longer orbital periods with increasing stellar temperatures
- This tracks a rise in both the Neptune and sub-Neptune populations

FLAT

What about insolation?

0.056 - 0.048 (%) - 0.040 - 0.032 - 0.032 - 0.024 ح اعبور 800.0 0.000

We Do Not see a clear trend in insolation

- The cliff is relatively similar across insolation
- i.e., bolometric flux is not a main driver of the radius cliff

So what causes the cliff?

- XUV-dependent processes, such as photoevaporation
- More massive stars host larger (but not more massive) planets.... Possibly due to more massive disks (see Lozovsky+ 2021)

The Radius Cliff is not flat!

- We quantify the shape of the radius cliff as a function of orbital period, insolation flux, and stellar type.
- It varies as a function of orbital period and stellar type, but is relatively constant across insolation flux
- The cliff has a strong dependence on stellar type when looked at across period

- The models of the radius valley not not reproduce the intrinsic shape of the radius cliff in period or insolation.
- This feature is NOT just a secondary feature of the radius valley!

$$- 10^{-2}$$

$$- 10^{-4}$$

$$- 10^{-6}$$

$$- 10^{-10}$$

$$- 10^{-12}$$

$$- 10^{-14}$$

Dattilo+ 2023

The Radius cliff changes in period space

