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THE PROBLEM

e EPRYV SPECTROGRAPHS ARE NOW REACHING
INCREDIBLE PRECISIONS

e CM/S ON STARS HUNDREDS OF PARSECS AWAY

e SEVERAL ATOMS IN THE SILICON LATTICE
STRUCTURE IN THE CCD




NASA Exoplanet Archive
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THREE CLASSES OF ACTIVITY

granulation rotation magnetic cycles

2006

1996




GRANULATION

CONVECTIVE CELLS

BRIGHT “GRANULES" ARE HOTTER MATERIAL MOVING
TOWARD THE SURFACE

e ~1 KM/S VERTICAL VELOCITY

DARK INTERGRANULAR LANES ARE WHERE COOLER
GAS SINKS AWAY FROM THE SURFACE

e  SMALLER AREA BUT SINK FASTER THAN GRANULES RISE
HOURS TIMESCALE FOR SUN-LIKE STARS

MORE UPWELLING AREA THAN DOWNWELLING LEADS
TO CONVECTIVE BLUESHIFT

Granulation at the Sun’s surface
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Convection cell in the star's photosphere.

Dalal et al. (2023)



ROTATION

* STAR SPOTS AND FACULAE INTERFERE WITH
GRANULATION

e BLOCKS A PORTION OF THE CONVECTIVE
BLUESHIFT

e AS THE STAR ROTATES THE RADIAL COMPONENT
OF THE OVERALL CONVECTIVE BLUESHIFT
CHANGES

 HUGE VARIABILITY IN AMPLITUDE FOR DIFFERENT
STELLAR TYPES

e SIGNIFICANTLY WORSE FOR YOUNG STARS




MAGNETIC ACTIVITY CYCLES

International sunspot number S :
Yearly mean and 13-months smoothed number

Sunspot number S
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MEAN NUMBER OF SPOTS CHANGES
SIGNIFICANTLY

MORE SPOTS = LESS CONVECTIVE BLUESHIFT

MORE SPOTS = MORE ROTATIONAL
MODULATION

TRACKED NICELY BY CAHK

Radial Velocity [m s-1]
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THE STORY OF HD 154345

HD 154345

e PUBLISHED AS A PLANET CANDIDATE IN
2007 WITH A PARTIAL ORBIT
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THE STORY OF HD 154345
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Wright et al. (2009)

e PUBLISHED AS A CONFIRMED “JUPITER-TWIN" IN 2009 WITH ONE FULL ORBIT

e S-VALUES DERIVED FROM CAHK SHOWED SAME PATTERN AS VELOCITIES BUT
INTERPRETED AS SIMPLY A COINCIDENCE BECAUSE THE RV SIGNAL WAS TOO
LARGE TO BE CAUSED BY ACTIVITY



THE STORY OF HD 154345 Veocy Tine Serie

* [N THE NEXT DECADE WE STARTED TO SEE OTHER STARS WITH SIMILAR
HIGH AMPLITUDE CORRELATIONS BETWEEN S-VALUE AND RV

e “CONTINUED MONITORING OF HD 154345 SINCE 2008 HAS
SHOWN THAT THE ACTIVITY CYCLE CONTINUES TO BE WELL
CORRELATED WITH THE RVS, AMPLIFYING THE COINCIDENCE.
SIMILAR CORRELATIONS AMONG A SMALL NUMBER OF OTHER STARS
OF SIMILAR SPECTRAL TYPE HAVE BEGUN TO CAST DOUBT ON THE
PLANETARY HYPOTHESIS FOR HD 154345"

Time (Year)

S-value Time Series

Time (Year)



THE STORY OF HD 154345 Veocy Tie Serie

Time [Year}

S-value Time Series

e AFTER 2015 WE STARTED TO NOTICE THAT THE S-VALUES WERE
COMPLETELY OUT OF PHASE WITH THE RV SIGNAL

2015
Time [Year}




THE STORY OF HD 154345

e By 2021 WE WERE ABLE TO SEPARATE THE TWO SIGNALS USING
THE RVS ALONE

¢ QUASI-PERIODIC ACTIVITY SIGNAL WITH A PERIOD OF 7.6 YEARS

* PLANET ON CIRCULAR ORBIT WITH PERIOD OF 9.3 YEARS




COMPENSATING FOR STELLAR ACTIVITY

GAUSSIAN PROCESS REGRESSION

QUICKLY GAINED POPULARITY IN THE LATE 2010'S AS A WAY TO
SIMULTANEOQUSLY FIT FOR STELLAR ACTIVITY IN THE TIMESERIES DATASETS
THEMSELVES

ESPECIALLY USEFUL IN CASES WHERE WE KNOW BOTH THE PLANET'S PERIOD
AND THE ROTATION PERIOD OF THE STAR

CAN CONSTRAIN THE GP HYPERPARAMETERS FROM MANY DIFFERENT
DATA)\SETS AT ONCE (E.G. CAHK, PHOTOMETRY, CCF CHARACTERISTICS,
ETC.

QUASI-PERIODIC KERNEL MOST COMMON

PROBLEMS FOR RVS:

* DIFFICULT TO DISENTANGLE QUASI-PERIODIC AND PERIODIC SIGNALS FROM RV
DATA ALONE, ESPECIALLY FOR LOW-AMPLITUDE SIGNALS

¢ THE GP CAN INTERFERE WITH THE KEPLERIAN FIT AND BIAS THE AMPLITUDE
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L1 Spectrum of SCI2: KP.20240823.20565.08 -
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DOPPLER SHIFT LINE DISTORTIONS
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All spectral lines (nb lines = 5936)
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HD 13808
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ARE TRANSFORMERS IN OUR FUTURE®

TRANSFORMERS HAVE REVOLUTIONIZED THE
CAPABILITIES OF Al/ML

PREVIOUS GENERATIONS OF NEURAL
NETWORKS RELIED ON MASSIVE PRE-LABELED
DATASETS

TRANSFORMERS CAN DISCOVER
RELATIONSHIPS WITHIN THE DATA ON THEIR
OWN

ASTRONOMY DATASETS AND BUDGETS ARE
GENERALLY TOO SMALL TO TRAIN
FOUNDATIONAL MODELS

FINE-TUNING EXISTING MODELS MAY SUFFICE
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SUMMARY

WE'RE GOOD AT BUILDING SPECTROGRAPHS

STELLAR PHOTOSPHERES ARE MOVING TARGETS

STARS ARE ALWAYS TRYING TO TRICK US

RV DATASETS ARE NOW LARGE ENOUGH TO EXPLORE NEW COMPUTING TECHNIQUES
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