DIVING INTO THE PLANETARY SYSTEM OF PROXIMA WITH NIRPS

A. Suárez Mascareño NIRPS Consortium

NIRPS Consortium

Univ. Geneva (Switzerland), Univ. Montreal (Canada), IAC (Spain), Univ. Porto (Portugal Univ. Grenoble (France), Univ. Rio Grande do Norte (Brazil)

NIRPS

NIR spectrograph 3.6m ESO telescope

• La Silla Observatory

YJH-band coverage R~75 000 – 90 000

AO-assisted

Designed for 1 m/s

- Thermally/pressure stabilized
- Precise wavelength calibration

NIRPS

NIR spectrograph 3.6m ESO telescope

• La Silla Observatory

YJH-band coverage R~75 000 – 90 000

AO-assisted

Designed for 1 m/s

- Thermally/pressure stabilized
- Precise wavelength calibration

Sp. Type: M5.5V Eff. Temperature: 2900 K Mass: 0.12 M_{Sun} Radius: 0.15 R_{Sun} Age: 4.9 Gyr Visual magnitude: 11.1 Rotation ~83 days Cycle ~7 years* *Not really

t Years

Proxima b (confirmed) P. orb 11.19 d – Habitable zone Mass 1.1 Me Krv 1.25 m/s – Benchmark for NIRPS

Proxima c (candidate, challenged) P .orb 1900 d Mass 5.2 Me Krv 1.2 m/s

Proxima d (candidate) P. orb 5.12 d Mass 0.26 Me Kry 0.39 m/s

NIRPS GTO DATA

NIRPS

149 epochs RMS RV 1.69 m/s sigRV 55 cm/s

HARPS

135 epochs RMS RV 3.5 m/s sigRV 1.4 m/s

Baseline 600 days

ALL DATA

- NIRPS 149 epochs RMS RV 1.69 m/s
- HARPS 393 epochs RMS RV 3.2 m/s
- ESPRESSO 116 epochs RMS RV 1.98 m/s
- UVES 77 epochs RMS RV 2.0 m/s
- Photometry 2200 epochs
- Baseline 24 years

MODEL DEFINITION

The "null" model includes:

- Cycle component
- Multi-dimensional GP (S+LEAF), using phot. And FWHM
- Trend against CRX
- Polynomial against BERV

$$\begin{split} \Delta Flux &= V0 + Cycle + Rot ,\\ \Delta FWHM_{NIR} &= V0 + Cycle + Rot ,\\ \Delta FWHM_{VIS} &= V0 + Cycle + Rot ,\\ \Delta FWHM_{VIS} &= V0 + f_{CRX} + f_{BERV} + Cycle + Rot + Planets ,\\ \Delta RV_{VIS} &= V0 + f_{CRX} + f_{BERV} + Cycle + Rot + Planets \end{split}$$
 $k(\tau, P_{rot}, L) &= k_{SHO 1}(\tau, \sigma_1, P_1, Q_1) + k_{SHO 2}(\tau, \sigma_2, P_2, Q_2) \\ &+ (\sigma^2(t) + \sigma_i^2) \cdot \delta_{\tau} \end{split}$

NIRPS-ONLY

Very significant detection of Proxima b

NIRPS + HARPS (GTO)

10^{-1} False inclusion probability **Detected** signals Based on the fraction of 0.1% FIP threshold samples of the posterior within 1% FIP threshold 10^{-5} 10% FIP threshold each frequency bin. ≞ 10⁻ Optimistic threshold 50% Conservative threshold 1% Enticing peak at 5.12d 10^{-1} (see Hara. N. C. et al. 2022) 10 100 Period (d)

Very significant detection of Proxima b

ALL DATA

- NIRPS 149 epochs RMS RV 1.69 m/s
- HARPS 393 epochs RMS RV 3.2 m/s
- ESPRESSO 116 epochs RMS RV 1.98 m/s
- UVES 77 epochs RMS RV 2.0 m/s
- Photometry 2200 epochs
- Baseline 24 years

ALL DATA

False inclusion probability Based on the fraction of samples of the posterior within each frequency bin.

Optimistic threshold 50% Conservative threshold 1%

(see Hara. N. C. et al. 2022)

Very significant detection of Proxima b and d

Apodized signals (Hara, N. C. et al. 2022)

$$y(t) = -K \cdot \sin(2\pi \cdot (t - t_0)/P_{pl}) \cdot G(\mu, \sigma)$$

Signals of Proxima b and d are stable over time

ADOPTED MODEL

Parameter	Value
Proxima d	
$T_0 - 2450000$ [d]	10557.55 ± 0.16
$P_{\rm orb}$ [d]	5.12338 ± 0.00035
$m_p \sin i [M_{\oplus}]$	0.260 ± 0.038
a [au]	0.02881 ± 0.00017
e	0 (fixed)
Incident flux $[S_{\oplus}]$	1.92 ± 0.71
$T_{eq A=0.3} [K]$	282 ± 23
$K [cm \cdot s^{-1}]$	39.2 ± 5.7
Drovima h	
T = 2450000 [4]	10548 50 + 0.12
$I_0 = 2450000$ [d]	10548.59 ± 0.12
$P_{\rm orb}$ [d]	11.18465 ± 0.00053
$m_p \sin i [M_{\oplus}]$	1.055 ± 0.055
a [au]	0.04848 ± 0.00029
е	0 (fixed)
Incident flux $[S_{\oplus}]$	0.68 ± 0.25
$T_{eq A=0.3} [K]$	218 ± 18
$K [cm \cdot s^{-1}]$	122.6 ± 6.2

Cycle length ~17.7 years

Much longer than previously though!

15

10

-5

-10

UVES

HARPS 03

HARPS 15

ESP 18

ESP 19

Model

Δ RV (m/s)

Rotation signal evolves over the years

*Discussed by Wargelin et al, 2017

Sun-like differential rotation?

Email: <u>asm@iac.es</u>

Bluesky: @asmasca.bsky.social

Diving into the planetary system of Proxima with NIRPS* **

Breaking the meter per second barrier in the infrared

Alejandro Suárez Mascareño^{1,2,*}, Étienne Artigau^{3,4}, Lucile Mignon^{5,6}, Xavier Delfosse⁶, Neil J. Cook³, François Bouchy⁵, René Doyon^{3,4}, Jonay I. González Hernández^{1,2}, Thomas Vandal³, Izan de Castro Leão⁷, Atanas K. Stefanov^{1,2}, João Faria^{5,8}, Charles Cadieux³, Pierrot Lamontagne³, Frédérique Baron^{3,4}, Susana C. C. Barros^{8,9}, Björn Benneke³, Xavier Bonfils⁶, Marta Bryan¹⁰, Bruno L. Canto Martins⁷, Ryan Cloutier¹¹, Nicolas B. Cowan^{12,13}, Daniel Brito de Freitas¹⁴, Jose Renan De Medeiros⁷, Elisa Delgado-Mena^{15,8}, Pedro Figueira^{5,8}, Xavier Dumusque⁵, David

Ehrenreich^{5, 16}, David Lafrenière³, Christophe Lovis⁵, Lison Malo^{3, 4}, Claudio Melo¹⁷, Christoph Mordasini¹⁸, Francesco Pepe⁵, Rafael Rebolo^{1, 2, 19}, Jason Rowe²⁰, Nuno C. Santos^{8, 9}, Damien Ségransan⁵, Stéphane Udry⁵, Diana Valencia¹⁰, Gregg Wade²¹, Manuel Abreu^{22, 23}, José L. A. Aguiar⁷, Khaled Al Moulla⁵, Guillaume Allain²⁴, Romain Allart³, Tomy Arial⁴, Hugues Auger²⁴, Luc Bazinet³, Nicolas Blind⁵, David Bohlender²⁵, Isabelle Boisse²⁶, Anne Boucher³, Vincent Bourrier⁵, Sébastien Bovay⁵, Christopher Broeg^{18, 27}, Denis Brousseau²⁴, Alexandre Cabral^{22, 23}, Andres Carmona⁶, Yann Carteret⁵, Zalpha Challita^{3, 26}, Bruno Chazelas⁵, João Coelho^{22, 23}, Marion Cointepas^{5, 6}, Uriel Conod⁵, Eduardo Cristo^{8, 9}, Ana Rita Costa Silva^{8, 9, 5}, Antoine Darveau-Bernier³, Laurie Dauplaise³, Jean-Baptiste Delisle⁵, Roseane de Lima Gomes^{3, 7}, Thierry Forveille⁶, Yolanda G. C. Frensch^{5, 28}, Félix Gracia Témich¹, Dasaev O. Fontinele⁷, Jonathan Gagné^{20, 3}, Frédéric Genest³, Ludovic Genolet⁵, João Gomes da Silva⁸, Nolan Grieves⁵, Olivier Hernandez²⁹, Melissa J. Hobson⁵, H. Jens Hoeijmakers^{30, 5}, Norbert Hubin¹⁷, Farbod Jahandar³, Ray Jayawardhana³¹, Hans-Ulrich Käufl¹⁷, Dan Kerley²⁵, Johann Kolb¹⁷, Vigneshwaran Krishnamurthy¹², Benjamin Kung⁵, Alexandrine L'Heureux³, Pierre Larue⁶, Henry Leath⁵, Olivia Lim³, Gaspare Lo Curto²⁸, Allan M. Martins^{7, 5}, Jaymie Matthews³², Jean-Sébastien Mayer⁴, Yuri S. Messias^{3, 7}, Stan Metchev³³, Leslie Moranta^{3, 29}, Dany Mounzer⁵, Nicola Nari^{34, 1, 2}, Louise D. Nielsen^{5, 17, 35}, Ares Osborn¹¹, Mathieu Ouellet⁴, Jon Otegi⁵, Léna Parc⁵, Luca Pasquini¹⁷, Vera M. Passegger^{1, 2, 36, 37}, Stefan Pelletier^{5, 3}, Céline Peroux¹⁷, Caroline Piaulet-Ghorayeb^{3, 38}, Mykhaylo Plotykov¹⁰,

Emanuela Pompei²⁸, Anne-Sophie Poulin-Girard²⁴, José Luis Rasilla¹, Vladimir Reshetov²⁵, Jonathan Saint-Antoine^{3,4}, Mirsad Sarajlic¹⁸, Ivo Saviane²⁸, Robin Schnell⁵, Alex Segovia⁵, Julia Seidel^{28,39,5}, Armin Silber²⁸, Peter Sinclair²⁸, Michael Sordet⁵, Danuta Sosnowska⁵, Avidaan Srivastava^{3,5}, Márcio A. Teixeira⁷, Simon Thibaull²⁴, Philippe Vallée^{3,4}, Valentina Vaulato⁵, Joost P. Wardenier³, Bachar Wehbe^{22,23}, Drew Weisserman¹¹, Ivan Wevers²⁵, François Wildi⁵, Vincent Yariv⁶, Gérard Zins¹⁷

Article under review in Astronomy & Astrophysics

- Demonstration of NIRPS performance
- Detection of Proxima b with NIRPS
- Full confirmation of Proxima d
- Characterization of Proxima's magnetic cycle
- Characterization of Proxima's differential rotation

Apodized signals (Hara, N. C. et al. 2022)

SIGNAL STABILITY

A BIT ABOUT PROXIMA

FWHM ~ -Flux

