Determining the Host Stars of Planets in Binary Star Systems

Nathanael Burns-Watson With: Dr. Kendall Sullivan and Prof. Adam L. Kraus

 The University of Texas at Austin

 Department of Astronomy

 College of Natural Sciences

(Lucasfilm Ltd.)

Binary Stars

- Roughly half of all Sun-like stars are in binaries
- Most exoplanet research focuses on single stars
- Binary stars have fewer planets on average: <u>planet</u> <u>formation is different in</u> <u>binaries</u>

Binaries as Planet Hosts

(Mochejska et al. 2001)

- Binaries are almost always unresolved in Kepler (and TESS) imaging
- This means it's not obvious which star a planet in a binary is orbiting
- How could we figure out the host star?

Why Care About the Host Star?

(Mochejska et al. 2001)

- Host star affects the inferred radius of the planet (Ciardi et al. 2015)
- This affects the demographics of planet radii
- Do more planets form around the primary star or secondary star? Implications for planet formation in binaries

Methodology

Radius Gap (or lack thereof?) No Radius Gap for Planets in Binaries?

 Sullivan et al. (2023) demonstrated that planets in binaries may not show a radius gap

• <u>But:</u> This required an assumption that all of the planets are orbiting the primary star

My Project

- Performing asterodensity analysis on planets that would be in the radius gap if they are orbiting the primary star
- 15 total planets across 10 binary systems analyzed so far
- Binaries are <2" in angular separation
- Will enough of these planets move out of this range for a gap to appear?

Ambiguity is Common

Using Bayes' Theorem

Prior Probabilities

- Planets would have larger radii if they were hosted by the secondary star
- We know that larger planets are less common
- Prior favors primary hosts by design
- This bias is consistent with observational and theoretical evidence

Revised Radii

 15 total planets: 11 more likely (>50%) orbiting primary, 4 orbiting secondary

• 9 radius gap planets: 7 primary, 2 secondary

 5 planets are >90% for primary, none that high for secondary

Interpreting the Results: Likelihoods

 Density posteriors show a consistent shape: namely a low density tail out to ~0

 This means that <u>secondary</u> <u>hosts can be ruled out in</u> <u>some cases, but primary</u> <u>hosts never can</u>

Interpreting The Results: Posteriors

- Bayesian likelihoods show a stronger preference for secondary hosts than the posteriors do
- Even with a prior that is biased against secondary hosts, they can't be ruled out in most cases

 Does this suggest that these planets could really be hosted by the secondary?
 Just a result of low precision?
 Or due to unknown systematics?

Conclusions and Future Work

- We have found unambiguous primary hosts for 5 planets so far. The rest have been ambiguous
- Perform analysis for a larger sample of planets and assemble statistics on primary vs secondary star host.
- In multi-planet systems: Are the planets all orbiting the same star or some combination of both? Larger sample helps here too
- Our analysis is SNR-limited: More epochs and higher precision photometry would help
- To achieve more conclusive results, we could combine this work with other techniques to infer the host star (ex: centroid shifts, TTV's, etc.)

Test Case: Fast vs Slow Cadence

- Kepler's default exposure cadence was 30-minutes, but there was a faster 60-second cadence
- Could that yield narrower posteriors by resolving ingress/ egress? Tested this on KOI 284.01
- Found little difference (<u>we are</u> <u>SNR limited, not cadence</u> <u>limited</u>) and have continued to use the 30-minute cadence data for uniformity

