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Sing et al. (2024)

Exoplanet transits with 
phenomenal precision



The Transit Opportunity
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The Transit Opportunity

Rustamkulov et al. (2023)



The Transit Opportunity: Biosignatures?

Meadows et al. (2023)



The Transit Opportunity and Challenge

transit chord

spots faculae
Stellar spottedness 
affects transit depths too! 
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Pre-transit Stellar Disk is the
Assumed Light Source

Actual Light Source is the Chord 
Defined by the Planet’s Projection

The Transit Light Source Effect
Spectral Difference due to
Different Spot/Faculae
Contributions Contaminates
Transit Spectrum

Observed Transit Spectrum
True Planetary Spectrum

Rackham, Apai, & Giampapa (2018)

Dobs(λ) = ϵ(λ)D(λ)

planetstar

See also: Pont+08, Bean+10, Sing+11, Aigrain+12, Huitson+13, Jordán+13, 
                 Kreidberg+14, McCullough+14, Nikolov+15, Herrero+16, Zellem+17
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The TLS effect is largest for K and M dwarfs

Rackham, Apai, & Giampapa (2018)Rackham, Apai, & Giampapa (2019)

100 ppm feature 

100 ppm feature 

They can imprint molecular features on transit depths
that are comparable to or much larger than planetary features.
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Stellar activity
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Moran, Stevenson et al. (2023)

Stellar activity

is the bottleneck for 
JWST transit observations 
of small exoplanets.

See talks from Caroline Piaulet-Ghorayeb,
Arianna Saba, Catriona Murray, Natalie Allen, 
Luis Welbanks, and Michael Radica  
and poster by Ana Glidden



Moran, Stevenson et al. (2023)

Stellar activity

is the bottleneck for 
JWST transit observations 
of small exoplanets.

ChatGPT:



Moran, Stevenson et al. (2023)

Stellar activity

is the bottleneck for 
JWST transit observations 
of small exoplanets.

JWST is revealing 
incredible details about 
exoplanet atmospheres. 
Or stellar atmospheres. 
We’re still deciding.

ChatGPT:
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Lim et al. (2023)

Different spectral slope

~400 ppm cont. offset

The stellar activity bottleneck

Meadows et al. (2023)

Goal: 10 ppm precision Reality: O(100–1000) ppm stellar signals
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The best-studied exoplanets  
must have the best-studied stars!
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The best-studied exoplanets  
must have the best-studied stars!

The goal is 10 ppm precision. 
The reality is… not that.

ChatGPT:



Outline
1. Tackling Stellar Activity  

in a Model-Limited Regime

2. A Roadmap to Atmospheres of 

Terrestrial Exoplanets with JWST



1. Tackling Stellar Activity  
in a Model-Limited Regime



This talk: TLS effect mitigation using stellar spectra

star star

(star – planet) / star

Typically just used  
for normalization
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This talk: TLS effect mitigation using stellar spectra
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photosphere +

spots + 

faculae + 

?

photosphere +

spots + 

faculae + 

?

What can we learn from 
the stellar spectra?

(star* – planet) / star

In-transit spectra:
See talks from 
Arianna Saba  
& Luis Welbanks

This talk: TLS effect mitigation using stellar spectra



Credit: NASA/JPL-Caltech/R. Hurt, T. Pyle (IPAC)

The TRAPPIST-1 System

M8V



Credit: NASA/JPL-Caltech/R. Hurt, T. Pyle (IPAC)

The TRAPPIST-1 System

M8V

Disclaimer: 
There are other stars than TRAPPIST-1.
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Lionel Garcia et al. (2022) 
(see also Zhang et al. 2018, Wakeford et al. 2019)

Models don’t uniquely identify spectral components
e.g., TRAPPIST-1

1 component 2 component 3 component

➡ Equally poor fits (rel. to HST precision)



Using out-of-transit spectra…

e.g., TRAPPIST-1 

Lionel Garcia et al. (2022) 
(see also Zhang et al. 2018, Wakeford et al. 2019)

Models don’t uniquely identify spectral components



Using out-of-transit spectra…

…to constrain heterogeneities  
on the stellar surface…

e.g., TRAPPIST-1 

Lionel Garcia et al. (2022) 
(see also Zhang et al. 2018, Wakeford et al. 2019)

Models don’t uniquely identify spectral components



…yields a range of corrections, 
leading to >5 x increase  
in uncertainty


➡ Not photon-limited

e.g., TRAPPIST-1

Lionel Garcia et al. (2022) 
(see also Zhang et al. 2018, Wakeford et al. 2019)

Models don’t uniquely identify spectral components
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Model fidelity issue is more pronounced for JWST
e.g., TRAPPIST-1

Fatemeh Davoudi et al. (2024)

NIRISS/SOSS

NIRSpec/PRISM

1 component 2 component 3 component

For TRAPPIST-1 
JWST spectra, 
models with multiple 
components are  
not clearly better
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e.g., TRAPPIST-1
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NIRISS/SOSS

NIRSpec/PRISM

1 component 2 component 3 component

ChatGPT:



Model fidelity issue is more pronounced for JWST
e.g., TRAPPIST-1

Fatemeh Davoudi et al. (2024)

NIRISS/SOSS

NIRSpec/PRISM

1 component 2 component 3 component

TRAPPIST-1 is a 
great system for 
testing atmospheric 
models. Mostly 
because none of 
them work on it.

ChatGPT:



Moran, Stevenson et al. (2023)

…and not just limited to TRAPPIST-1
e.g., GJ 486 (M3.5V)



Moran, Stevenson et al. (2023)

…and not just limited to TRAPPIST-1
e.g., GJ 486 (M3.5V)

Conclusion:  
1–3 component 
models fit the 
data equally well



Can the right model complexity be 
identified with sufficient model fidelity?



Can the right model complexity be 
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Can the right model complexity be 
identified with sufficient model fidelity?

(Rackham & de Wit 2024)Yes.

So how do we 
move towards the 
next-gen of stellar 
spectral models?



Smitha et al. (2024)

3D MHD spot contrasts are becoming available
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1. We are in a data-rich, model-limited regime 
for studies of exoplanets transiting late-
type stars.


2. Corrections for stellar activity are possible, 
provided we have good models.


3. 1D models approximate spots well on G 
dwarfs, decently on K dwarfs, and poorly 
on M dwarfs.


4. 3D MHD models are needed to derive 
facular contrasts.

So, in summary, if we 
want to characterize 
exoplanets, we need 
better stellar models. 
Should be simple.

ChatGPT:
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First step: emission
e.g., LHS 3844b: large-amplitude, symmetric phase curve rules out thick atmosphere

Kreidberg et al. (2019)



Rocky Worlds DDT
500 JWST hours and 250 HST orbits for rocky planets around low-mass stars

Lead: Néstor Espinoza 
Deputy Lead: Hannah Diamond-Lowe
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~20 hr of data enables empirical model  
with uncertainty equal to data precision

David Berardo, de Wit, & Rackham (2024)

Spectroscopic phase curves offer empirical constraints
especially promising for JWST spectra of late-type stars



Transmission spectroscopy  
without improved stellar models  
or long-baseline JWST observations?
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Double transits provide an empirical correction for TLS

thin-to-no 
atmosphere

thick 
atmosphere
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Rathcke et al. (2025)

both with 
thin-to-no 
atmosphere
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Constraints on mixing and distribution of heterogeneities

Spectral components  
are well-mixed in 
TRAPPIST-1’s photosphere

Rathcke et al. (2025)
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Main Points
On to rocky worlds

1. The first step to terrestrial exoplanet 
characterization is emission, where suitable.

2. The road to transmission spectra of terrestrial 
exoplanets runs through their stars.

3. Stellar spectroscopic phase curves and 
double transits provide opportunities for 
empirical constraints.

4. Latest understanding of TRAPPIST-1 is a 
well-mixed, two-component photosphere 
with some latitudinal dependence.



3. Bonus:  
 
Future Directions for  
Knowing Stars & Knowing Planets
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SPOTLESS

PI: Ignasi Ribas

Physical Modeling of Stellar Activity 
to Discover and Measure exoEarths

ERC Synergy Grant 
REVEALing Signatures of Habitable 
Worlds Hidden by Stellar Activity 

PIs: Sasha Shapiro, Sara Seager, Andrew Collier Cameron

REVEAL

HST Stellar Treasure Trove / 
Eyes on the Stars
PIs: Benjamin Rackham, Dániel Apai, Julien de Wit

Legacy Archival Analyses of HST & JWST Datasets 
to Constrain Photospheres of Exoplanet Hosts and 
Quantify Stellar Contamination Signals
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regime for studies of exoplanets 
transiting late-type stars.


2.  The road to transmission spectra of 
terrestrial exoplanets runs through their 
stars, and some empirical constraints 
may get around current model limitations.


3. Large efforts are underway to study 
heterogeneity from multiple approaches 
and inform transit studies and stellar 
modeling efforts.

The path to understanding 
exoplanets is clear: 
first, understand the 
stars. And if that seems 
too hard—good news! 
There’s always cosmology.
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