

The PLATO Mission

(PLAnetary Oscillations and stars)

Annelies Mortier, Birmingham, UK

on behalf of

Heike Rauer, DLR, Institut für Planetenforschung, Berlin-Adlershof, Germany

Heras, Ana, ESA, Noordwijk, Netherlands Mas-Hesse, Miguel, INTA, Madrid, Spain Pagano, Isabella, INAF, Catania, Italy

and the whole PLATO Team

The PLATO Satellite – ESA's M3 Mission

- PLATO: PLAnetary Transits and Oscillations of stars
- Launch Q4 2026 with Ariane 6 into orbit around L2 Earth-Sun Lagrangian point
- Multi-telescopes approach: 26 cameras
- High precision photometry : $4 \le m_v \le 11$ (13)
- Precision of 50 ppm in 1 hour for $mv \le 11$

ESA/OHB

The FoV is spread over: ~2 billion pixels (2 000 Mpx vs 98 Mpx for Kepler) ~6 600 cm² of sensitive area (2x Gaia)

Size of about 3.5 m × 3.1 m × 3.8 m (8.2 m solar array) Launch mass of 2165 kg, including consumables

The PLATO Methods

- "PLAnetary Transits and Oscillations of stars" (PLATO) is a mission to detect and characterise exoplanets and their host stars.
- It is optimised to reach Earth like planets in the habitable zone of bright solar-like stars

Science Questions

- How do planets and planetary systems form and evolve?
- Is our solar system unique and are there other systems like ours?
- Are there potentially habitable planets?
- What are planets made of?
- What are the properties of their host stars?

Science Objectives

plato

Architecture, formation, evolution of planetary systems, and correlation with stellar parameters

Our Solar System in Context

Planet evolution with age

Additional planetary science (exo-moons, planets around evolved stars, albedo studies via secondary transits...)

Identification of good targets for spectroscopic follow-up of planet atmospheres

Internal structure of stars

Determination of bulk properties of thousands of exoplanets, including terrestrial planets in the <u>habitable zone of Sun-like stars</u>

Required planet properties accuracies:

- radius, 3% (5%)
- mass, 10%
- age, 10%

for an Earth-size planet orbiting a G0 dwarf star with V < 10 (11)

Small planets in the habitable zone

Mass <15 M_earth, radius <10R_earth

1.40 1.40 1.20 1.20 8 2tellar mass [M☉] 0.80 0.40 ⊕ ⊕ Planet radius [R Planet radius [R Masses Masses 6 0.80 1 3 3 5 5 7 7 9 9 0.40 0.40 11 11 2 2 13 13 0.20 0.20 15 15 0.05 0.05 5.0 5.0 1.0 0.02 0.1 2.0 0.02 0.1 1.0 2.0 Semi major axis [AU] Semi major axis [AU]

Rauer et al. submitted (arXiv: 2406.05447)

With <10% mass and <5% radius precisions

Small planets in the habitable zone

Mass <15 M_earth, radius <10R_earth

Rauer et al. submitted (arXiv: 2406.05447)

Main sequence asteroseismology

Asteroseismic detections after 30d

Asteroseismic detections after 730d

Rauer et al. submitted (arXiv: 2406.05447)

The PLATO Instrument

ESA/OHB

(vs 105 deg² Kepler)

Target Fields

Baseline Operation period: → 4 years

Nominal Mission operation plan: ▶ 2 "long pointings" of 2 years each

Options for mission extensions:

- Meet performance requirements until 6.5 years
- Consumables for 8.5 years mission duration

Rauer et al. submitted (arXiv: 2406.05447). See also Nascimbeni et al. 2025 (arXiv: 2501.07687) for a detailed description on the first target field.

Complementary Science

• Other science topics:

- Reflected light from close-in giant planets
- Circumbinary planets, Exo-moons, rings, ...
- Planets around young and evolved stars
- Galactic Archeology, Clusters, Associations, AGN?
- Asteroseismology across HRD, for large range in Z
- Binaries & tidal evolution across HRD
- Accretion, debris disks & magnetism in YSO
- → Guest Observer program:
- > 8% of the science data rate for the Guest Observer Program.
- Participation is selected through ESA calls 6 months before launch!

Rauer et al. submitted (arXiv: 2406.05447)

Status Spacecraft

- 24 FM cameras (out of 26) delivered to the prime.
- 2 Fast Camera flight models in final testing.
- Camera flight model integration on optical bench is in progress.
- **Project in schedule** for **planned launch date end 2026**.
- Contract with Arianespace signed for Ariane 6 launcher.

Thermal-vaccum test of PLATO optical bench and camera model @ ESA

Camera gallery...

The PLATO Mission Consortium

Cesa

