HD 209458b's Lyman-alpha double transit Jessica Spake

E. Schreyer, P. Loyd, J. Owen, H. Knutson, L. Hillenbrand, S. Vissapragada, M. Zhang

Collaborator Spotlight

Ethan Schreyer UCSC

Parke Loyd Eureka

James Owen Imperial

Madelyn Broome UCSC

Lynne Hillenbrand Caltech

Shreyas Vissapragada Carnegie

Heather Knutson Caltech

Zhang Chicago

NASA Exoplanet Archive 2.0 Planet Radius [Jupiter Radius] 1.5 Jupiter 1.0 0.5 Neptune 0.0 0.02 0.04 0.06 0.08 0.10 Distance to host star [au] Thu Nov 17 13:08:01 2022

See Owen & Wu (2013), Lopez & Fortney (2013), Mazeh et al. (2016), Fulton et al. (2017), Rogers et al. (2021)

Because it is **difficult** to observe directly

Because it is **difficult** to observe directly

And **complicated** to model

Because it is **difficult** to observe directly

And **complicated** to model

5 published Lyman-alpha detections

H

Because it is **difficult** to observe directly

And **complicated** to model

Because it is **difficult** to observe directly

And **complicated** to model

What accelerates the neutral hydrogen?

Radiation pressure

Stellar wind ram pressure

Energetic Neutral Atoms (ENAs)

Energetic (fast) ion

Background slow neutral atom Energetic (fast) neutral atom - ENA

Background slow ion

Stellar wind sculpting post-transit tails McCann et al. (2019)

see also MacLeod & Oklopčić (2021)

McCann et al. (2019)

WASP-107b's tail observed at 10830 A with Keck/NIRSPEC Spake, Oklopčić & Hillenbrand (2021)

See also Kirk et al. (2020), Z.J. Zhang+(2023)

Because it is **difficult** to observe directly

And **complicated** to model

Owen et al. (2022)

McCann et al. (2019)

HD 209458 A Prot = 10.65±0.75 d (Bonomo+2017) Naive ΔLya flux in 8 hours: 1%

00158b

Evidence for HD209458b's double Lyman-alpha tail

Validates 3D star-planet mass-loss models

Which we can now use for **better star+planet mass-loss measurements**

Orell-Miquel et al. (2024)

Science Mission	Launch: 2028, duration 2 years
Imaging FOV	3.5° x 3.5°
Image Quality (HPD)	< 2.25″
Imaging Bandpass	FUV: 1390–1900 Å
Sky Survey Depth	> 25.8 mag (FUV and NUV)
Spectrograph	2°-long slit, multiple widths
Spectrograph Bandpass	1150–2650 Å
Spectrograph Resolution	R > 1000
Orbit	Elliptical 17 R _E x 59 R _E , 13.7 days
Instantaneous Sky Accessibility	> 70%
Average ToO Response	< 3 hours

1 UVEX VISIT

Lyman- α absorbed blue wing [-120, -40] km s⁻¹

4 UVEX VISITS

Lyman- α absorbed blue wing [-120, -40] km s⁻¹

4 UVEX VISITS

Lyman- α absorbed blue wing [-120, -40] km s⁻¹

4 UVEX VISITS

Lyman- α absorbed blue wing [-120, -40] km s⁻¹

