Initial Results from the First Mass Loss Survey of Gas Giants Orbiting F Stars

Morgan Saidel

In collaboration with: Shreyas Vissapragada (Carnegie), Heather Knutson (Caltech), Mike Greklek-McKeon (Caltech), Jonathan Gomez-Barrientos (Caltech), Garrett Levine (Yale)

Close-in Planets Can Undergo Extreme Photoevaporation

XUV radiation

Hydrodynamic Outflow

Image Credit: NASA/CXC/M.Weiss

Close-in Planets Can Undergo Extreme Photoevaporation

XUV radiation

Hydrodynamic Outflow

Image Credit: NASA/CXC/M.Weiss

An escaping atmos. should increase transit depth

Brightness

Broadband planet size

An escaping atmos. should increase transit depth

ghtness Briç

Broadband planet size

Helium 1083 nm planet size

An escaping atmos. should increase transit depth

ghtness Briç

Broadband planet size

Excess Absorption

Helium 1083 nm planet size

Metastable Helium outflow detections are widely successful but preferential to cooler stars

Confirmed Exoplanets Helium Outflow Detections M stars K stars G stars F stars

Allart et al. (2018, 2019); Mansfield et al. (2018); Nortmann et al. (2018); Oklopčić & Hirata (2018); Salz et al. (2018); Spake et al. (2018, 2021); Alonso-Floriano et al. (2019); Guilluy et al. (2020); Kirk et al. (2020, 2022); Palle et al. (2020); Ninan et al. (2020); Vissapragada et al. (2020, 2022); Paragas et al. (2021); Czesla et al. (2022); Zhang et al. (2022a,b); Gully-Santiago et al. (2023); Orell-Miquel et al. (2023); Pérez González et al. (2023); Zhang et al. (2023); Saidel et al. (2025)

First Two F star Detections Reveal Fastest Outflows

First Two F star Detections Reveal Fastest Outflows

Three potential drivers for the large outflows

High stellar rotational velocities

e.g. Johnstone et al. (2021)

Three potential drivers for the large outflows

Roche Lobe

High stellar rotational velocities

Planet fills large fraction of Roche lobe

Zhang et al. (2023); Gully-Santiago et al. (2023)

Three potential drivers for the large outflows

Roche Lobe

High stellar rotational velocities

Planet fills large fraction of Roche lobe

Additional Energy Sources (Balmer Escape?)*

*and/or different outflow geometries

García Muñoz & Schneider (2019)

Survey F star worlds with 1083 nm Helium Filter on Palomar

Image Credit: Caltech/Palomar

Vissapragada et al. (2020)

SNR = 0.5SNR = 2.0HAT-P-32 b SNR = 3.5

Predicted based on 1D **EUV-driven** outflow models

50 30 60 40 vsin i [km/s]

Vissapragada et al. (2020); Dos Santos et al. (2022)

SNR = 0.5SNR = 2.0HAT-P-32 b SNR = 3.5

30 50 60 40 vsin i [km/s]

SNR = 0.5SNR = 2.0HAT-P-32 b SNR = 3.5

30 50 60 40 vsin i [km/s]

vsin i [km/s]

vsin i [km/s]

Three tentative detections of atmospheric escape!

Saidel et al. in prep.

WASP-180 A b (3.7σ) 1.02 1.01 .0 Relative Flux 0.99 0.98 0.97 2024/07/28 UT 0.96 2024/12/06 UT 0.01 Residual 0.00 -0.010.05 0.00 -0.10 -0.050.00 0.05 Time from Eclipse Center [d] Time from Eclipse Center [d]

Helium 1083nm planet size

Broadband planet size

No clear solitary driver of fast outflows

	•	SNR = 0.5
b		SNR = 2.0
AT-P-32 b		SNR = 3.5

WASP-93 b

60

WASP-180 A b

30 50 40 vsin i [km/s]

What's Next?

Finish survey

3D Models

Stellar XUV spectra

Image Credit: James Vaughan

