IMCOM: optimized image coaddition pipeline for Roman weak lensing cosmology Speaker: Kaili Cao (The Ohio State University)

Co-Authors: Christopher M. Hirata (OSU), Katherine Laliotis (OSU), Masaya Yamamoto (Duke → Princeton), Emily Macbeth (OSU), Michael A. Troxel (Duke) Acknowledgements: Roman HLIS Cosmology PIT, NASA Goddard Space Flight Center, Ohio Supercomputer Center

Outline of this IMCOM (IMage COMbination) overview

- **Motivation**
	- About gravitational lensing
	- When to use IMCOM?
- Introduction to coaddition ○ Why do we coadd images? ○ How do we coadd images?
- IMCOM vs. Drizzle
	- With vs. without control over output PSF
- "Stress test" with point sources
- Work in process
	- New implementation: pyimcom
	- New linear algebra strategies
	- Fine-tuning hyperparameters
- **Discussion**
	- Key takeaways
	- Other ongoing projects

Background: Gravitational lensing and cosmology

- Strong lensing (left)
- Weak lensing (right)

Image credits: ESA/Hubble & NASA, Bulwersator (strong lensing) / Michael Sachs (weak lensing)

When to use IMCOM? – Whenever you need coaddition.

- Weak lensing cosmology
	- A survey design tool for Roman HLWAS
	- A segment of our data analysis pipeline
	- Can be useful for other surveys as well

- Other research areas
	- Whenever you need to coadd images and can measure PSFs.
	- For example, asteroseismology with Roman GBTDS
		- Ecclesiastes 4:9: "Two are better than one, because they have a good return for their labor."

Why do we coadd images? – "Oversample, we must!"

- Roman point spread functions (PSFs)
	- \circ = Airy disk ($\sim \lambda/D$) + linear obscuration
		- + diffraction spikes + detector effects
	- An example in H158 band shown below

How do we coadd images? – Through linear combinations.

- Linear combination of input **signals**:
	- H: output signal, α : output pixel index, \bm{R}_{α} : output pixel position
	- \circ *I*: input signal, *i*: input pixel index, \mathbf{r}_i : input pixel position
	- \circ T: coaddition weight, n : number of (selected) input pixels

● Linear combination of input **PSFs**:

- PSF_{out}: reconstructed output PSF, Γ: target output PSF
- IMCOM minimizes discrepancy between PSF_{out} and Γ ("leakage").

IMCOM vs. Drizzle: With vs. without control over output PSF

- Hirata *et al.* (2024) Figure 9
- Drizzle (Fruchter & Hook 2002): What your telescope sees is what you get
- IMCOM (Rowe *et al.* 2011): What you get is closest to what you want to see

IMCOM vs. Drizzle: "Stress test" with point sources

- Yamamoto *et al.* (2024) Figure 10
- "SCI": simulated science images
- "truth": simulated noiseless images
- g_1, g_2 : ellipticities (expected to be 0 for point sources)

From fluffy-garbanzo + furry-parakeet to pyimcom

Image credits: PDPics (garbanzo) / Bru-nO (parakeet)

pyimcom: unified, object-oriented implementation

No. of core-hours per block (1 arcmin \times 1 arcmin)

Work in process: New linear algebra strategies

- Power spectra of simulated input white noise in Y106 band
- Upper: 2D spectra, averaged over 16² blocks
- **Lower: Azimuthally** averaged spectra, binned by mean coverage ("mc")

Work in process: Fine-tuning, e.g., choice of target PSF

- Injected point sources in K213 band
- Three PSFs with same FWHM
	- Simple Gaussian
	- Unobscured Airy disk*
	- Obscured Airy disk*
	- (*: Smoothed by a Gaussian.)
- Three shape measurements
	- Centroid (first moment)
	- Ellipticity (second moments)
	- Fourth moment (one of them; Zhang *et al.* 2023)

Discussion: Key takeaways and other ongoing projects

- **Key takeaways**
	- IMCOM is a linear image coaddition algorithm which provides control over reconstructed PSF in output images.
	- The new implementation is about an order of magnitude faster. It also provides alternative linear algebra strategies.
	- IMCOM is being fine-tuned for best weak lensing science yield.
- Other ongoing projects
	- Characterization and mitigation of biasing from read noise
	- Application of shear pipelines to IMCOM extended sources
	- Removal of large diffraction spikes via PSF splitting technique
	- Propagation of astrometry/flux calibration/PSF modeling errors

Thank you!

Repository: https://github.com/kailicao/pyimcom Speaker: Kaili Cao (Email: cao.1191@osu.edu)

Co-Authors: Christopher M. Hirata (OSU), Katherine Laliotis (OSU), Masaya Yamamoto (Duke \rightarrow Princeton), Emily Macbeth (OSU), Michael A. Troxel (Duke) Acknowledgements: Roman HLIS Cosmology PIT, NASA Goddard Space Flight Center, Ohio Supercomputer Center

Backup: About postage stamp boundary effects

TL;DL: They are caused by input pixel selection.

Backup: IMCOM formalism and example matrices

$$
A_{ij}=[G_j\otimes G_i] (\bm{r}_i-\bm{r}_j)
$$

Backup: Major operations of the IMCOM software

- Read input data, principally input signals (I_i), pixel positions (r_i), and PSFs ($G_{\!_i}$); parse configuration to get output pixel positions (\boldsymbol{R}_{α}) and the target PSF (Γ) .
- Perform fast Fourier transform (FFT) and inverse FFT to compute PSF overlaps ($G_j \otimes G_i$, $\Gamma \otimes G_i$, and $C = ||\Gamma||^2$).
- Perform interpolations (see Appendix A of Hirata *et al.* 2024 for details) using pixel positions to obtain system matrices (A and B).
- Solve linear systems to get the optimal Lagrange multiplier κ_{α} and coaddition weights $T_{\alpha i}^{\dagger}$ for each output pixel.
- Compute the output map (H_{α}), and report diagnostics for its quality ("PSF leakage" U_{α}/C and "noise amplification" Σ_{α}).