IMCOM: optimized image coaddition pipeline for Roman weak lensing cosmology Speaker: Kaili Cao (The Ohio State University)

Co-Authors: Christopher M. Hirata (OSU), Katherine Laliotis (OSU), Masaya Yamamoto (Duke → Princeton), Emily Macbeth (OSU), Michael A. Troxel (Duke) Acknowledgements: Roman HLIS Cosmology PIT, NASA Goddard Space Flight Center, Ohio Supercomputer Center

Outline of this IMCOM (IMage COMbination) overview

- Motivation
 - About gravitational lensing
 - When to use IMCOM?
- Introduction to coaddition
 Why do we coadd images?
 How do we coadd images?
- IMCOM vs. Drizzle
 - With vs. without control over output PSF

- "Stress test" with point sources
- Work in process
 - New implementation: pyimcom
 - New linear algebra strategies
 - Fine-tuning hyperparameters
- Discussion
 - Key takeaways
 - Other ongoing projects

Background: Gravitational lensing and cosmology

- Strong lensing (left)
- Weak lensing (right)

Image credits: ESA/Hubble & NASA, Bulwersator (strong lensing) / Michael Sachs (weak lensing)

When to use IMCOM? – Whenever you need coaddition.

- Weak lensing cosmology
 - A survey design tool for Roman HLWAS
 - A segment of our data analysis pipeline
 - Can be useful for other surveys as well

- Other research areas
 - Whenever you need to coadd images and can measure PSFs.
 - For example, asteroseismology with Roman GBTDS
 - Ecclesiastes 4:9: "Two are better than one, because they have a good return for their labor."

Why do we coadd images? - "Oversample, we must!"

- Roman point spread functions (PSFs)
 - = Airy disk ($\sim\lambda/D$) + linear obscuration
 - + diffraction spikes + detector effects
 - An example in H158 band shown below

How do we coadd images? – Through linear combinations.

- Linear combination of input **signals**: $H_{lpha} = \sum_{i=0}^{n-1} T_{lpha i} I_i$
 - *H*: output signal, α : output pixel index, \mathbf{R}_{α} : output pixel position
 - *I*: input signal, *i*: input pixel index, r_i : input pixel position
 - T: coaddition weight, n: number of (selected) input pixels

• Linear combination of input **PSFs**: $PSF_{\alpha,out}(\boldsymbol{R}_{\alpha} - \boldsymbol{s}) = \sum_{i=0}^{n-1} T_{\alpha i}G_i(\boldsymbol{r}_i - \boldsymbol{s})$

- PSF_{out} : reconstructed output PSF, Γ : target output PSF
- IMCOM minimizes discrepancy between PSF_{out} and Γ ("leakage").

IMCOM vs. Drizzle: With vs. without control over output PSF

- Hirata *et al.* (2024) Figure 9
- Drizzle (Fruchter & Hook 2002): What your telescope sees is what you get
- IMCOM (Rowe *et al.* 2011): What you get is closest to what you want to see

IMCOM vs. Drizzle: "Stress test" with point sources

- Yamamoto *et al.* (2024) Figure 10
- "SCI": simulated science images
- "truth": simulated noiseless images
- g₁, g₂: ellipticities
 (expected to be 0
 for point sources)

From fluffy-garbanzo + furry-parakeet to pyimcom

Image credits: PDPics (garbanzo) / Bru-nO (parakeet)

pyimcom: unified, object-oriented implementation

No. of core-hours per block (1 arcmin × 1 arcmin)

LA strategy	Hirata+ 24	Cholesky	Iterative
No. of cores	2 or 3	1 or 1.25	1 or 1.25
Y106 (hours)	41.54	7.87 ± 2.07	24.88 ± 7.05
J129 (hours)	47.53	13.11 ± 6.21	38.46 ± 9.16
H158 (hours)	61.02	11.74 ± 5.37	35.66 ± 9.68
F184 (hours)	58.51	34.26 ± 22.55	29.78 ± 6.75

Work in process: New linear algebra strategies

- Power spectra of simulated input white noise in Y106 band
- Upper: 2D spectra, averaged over 16² blocks
- Lower: Azimuthally averaged spectra, binned by mean coverage ("mc")

Work in process: Fine-tuning, e.g., choice of target PSF

- Injected point sources in K213 band
- Three PSFs with same FWHM
 - Simple Gaussian
 - Unobscured Airy disk*
 - Obscured Airy disk*
 - (*: Smoothed by a Gaussian.)
- Three shape measurements
 - Centroid (first moment)
 - Ellipticity (second moments)
 - Fourth moment (one of them;
 Zhang *et al.* 2023)

Discussion: Key takeaways and other ongoing projects

- Key takeaways
 - IMCOM is a linear image coaddition algorithm which provides control over reconstructed PSF in output images.
 - The new implementation is about an order of magnitude faster.
 It also provides alternative linear algebra strategies.
 - IMCOM is being fine-tuned for best weak lensing science yield.
- Other ongoing projects
 - Characterization and mitigation of biasing from read noise
 - Application of shear pipelines to IMCOM extended sources
 - Removal of large diffraction spikes via PSF splitting technique
 - Propagation of astrometry/flux calibration/PSF modeling errors

Thank you!

Repository: https://github.com/kailicao/pyimcom Speaker: Kaili Cao (Email: cao.1191@osu.edu)

Co-Authors: Christopher M. Hirata (OSU), Katherine Laliotis (OSU), Masaya Yamamoto (Duke → Princeton), Emily Macbeth (OSU), Michael A. Troxel (Duke) Acknowledgements: Roman HLIS Cosmology PIT, NASA Goddard Space Flight Center, Ohio Supercomputer Center

Backup: About postage stamp boundary effects

TL;DL: They are caused by input pixel selection.

Backup: IMCOM formalism and example matrices

$$A_{ij} = [G_j \otimes G_i] (oldsymbol{r}_i - oldsymbol{r}_j)$$

Backup: Major operations of the IMCOM software

- Read input data, principally input signals (I_i), pixel positions (r_i), and PSFs (G_i); parse configuration to get output pixel positions (R_{α}) and the target PSF (Γ).
- Perform fast Fourier transform (FFT) and inverse FFT to compute PSF overlaps ($G_i \otimes G_i$, $\Gamma \otimes G_i$, and $C = ||\Gamma||^2$).
- Perform interpolations (see Appendix A of Hirata *et al.* 2024 for details) using pixel positions to obtain system matrices (**A** and **B**).
- Solve linear systems to get the optimal Lagrange multiplier κ_{α} and coaddition weights $T_{\alpha i}$ for each output pixel.
- Compute the output map (H_{α}), and report diagnostics for its quality ("PSF leakage" U_{α}/C and "noise amplification" Σ_{α}).