

Exploring Relationship between Assembly bias and Halo properties toward Dark Emulator II

<u>Keitaro Ishikawa</u> (Nagoya U.)

collaborators :

Takahiro Nishimichi (Kyoto Sangyo U.), Hironao Miyatake (Nagoya U. KMI), Satoshi Tanaka (Kyoto U. YITP), Tomomi Sunayama(U. of Arizona)

Challenging Theory with Roman 2024 2024/07/11

LSS as a Cosmological Prove

Structures on a scale larger than that of galaxy clusters, which are being formed in a struggle between dark matter and dark energy.

Baryon

Dark Matter

Dark Energy

LSS as a Cosmological Prove

Structures on a scale larger than that of galaxy clusters, which are being formed in a struggle between dark matter and dark energy.

Baryon

Dark Matter

Dark Energy

To understand nature of **dark energy** and **dark matter** through Large Scale Structure (LSS)

Current & Future Observation

Current & Future Observation

Current & Future Observation

2026

2028

2030

Observational

2022

2024

2020

- Photo-z cf. KI+2023
- Galaxy shape
- · Random catalog etc.

Astrophysical

2032

2034

- Halo Assembly Bias
- AGN feedback etc.

What is halo assembly bias?

The linear halo bias primarily depends on halo mass.

What is halo assembly bias?

Secondary dependence on physical quantities other than halo mass

concentration, local overdensity, assembly history, ...

ex. The case we focus on halo that has higher than typical collapsing mass

early-forming

late-forming

same mass, but..

Secondary dependence on physical quantities other than halo mass

ex. The case we focus on halo that has higher than typical collapsing mass

early-forming

late-forming

less strong clustering

more strong clustering

What is halo assembly bias?

Secondary dependence

Non-trivial dependence

Non-trivial dependence between halo mass and concentration
 Smaller systematic error is required in the future → Need to consider

It affects cosmological params.

Construct an emulator that also predicts assembly bias parameters

To implement assembly bias effect

• Efficiently sample $M_{\text{threshold}}$, $c_{\text{threshold}}$ in 4D space

• sample range:

Measure in real-space, redshift-space (l = 0,2,4,6)

*normalizing flow + scrambled Sobol sequence

Check out all the cross-corr.

To implement assembly bias effect

Feed Forward Neural Network (FFNN)

Regress cross-corr. as a function of $M_{\rm threshold}$, $c_{\rm threshold}$

- loss function: χ^2
- · covariance: Jackknife
- *r* : [0.1,200] Mpc/*h*
- suppress cosmic variance
- sample size: 24,780
 (90% of # : train, validation, 10%: test)
 - $\boldsymbol{\cdot}$ automatic survey of hyper params

(hidden layer, # of neuron, batch size, scheduler, initial learning rate)

 * consider cosmological dependence as a future work

Result: achieve 1% accuracy (2-40 [Mpc/h])

Real space

loss function

Keitaro Ishikawa "Halo Assembly Bias toward Dark Emulator 2", Roman 2024

correlation function (test data)

Summary

 \oslash The goal of this study:

Implement halo assembly bias effect into Dark Emulator II

What exactly do we do?:

- Efficiently sample in multi-dimensional space
- · Learn params. dependence in 4D input space by FFNN
- Result:
 - Achieved 1% accuracy (2-40 [Mpc/h]) in prediction on FFNN
 - Automatic hyper parameters search with Optuna
- Next Step:
 - Redshift dependence
 - Cosmological parameters dependence
 - Implementing Dark Emulator 1 into Roman analytical pipeline