Finding black holes with microlensing: current and future prospects Casey Lam (Carnegie Observatories)

With Jessica Lu + group (UC Berkeley), PALS group (LLNL), OGLE collaboration, MOA collaborations, and others...

With funding support from:

Characterizing the stellar-mass black hole population is needed to understand a broad range of astrophysics

Unknown properties of Galactic black holes:

Properties needed to understand:

- Massive star evolution, death

- Number
- Mass function
- Binary fraction
- Formation channel(s)
- Birth kick velocity

- Initial-final mass relation
- Chemical enrichment, feedback
- Binary interaction, mass transfer

Characterizing the stellar-mass black hole population is needed to understand a broad range of astrophysics

Unknown properties of Galactic black holes:

- **Properties needed to understand:**
 - Massive star evolution, death
- Number
- Mass function
- Binary fraction
- Formation channel(s)
- Birth kick velocity

Initial-final mass relation

- Chemical enrichment, feedback
- Binary interaction, mass transfer

X-ray binary

Merging binary

We need to find isolated black holes!

Detached binary

Isolated

Gravitational lensing depends on mass (not luminosity) of foreground lens = Good for finding black holes

Photometric + astrometric microlensing = lens mass measurements

E

Photometric + astrometric microlensing = lens mass measurements

Photometric brightening

Photometric + astrometric microlensing = lens mass measurements

Astrometric shift

Photometric brightening

1. Select BH candidates from photometric microlensing alerts

- 1. Select BH candidates from photometric microlensing alerts
 - ~2000 alerts/yr, ~1% of those due to BHs

- 1. Select BH candidates from photometric microlensing alerts
 - ~2000 alerts/yr, ~1% of those due to BHs
 - Timescale $t_E \sim (Lens mass)^{1/2}$

- 1. Select BH candidates from photometric microlensing alerts
 - ~2000 alerts/yr, ~1% of those due to BHs
 - Timescale $t_E \sim (Lens mass)^{1/2}$
 - \rightarrow Long-duration events (t_E > 120 days)

- 1. Select BH candidates from photometric microlensing alerts
 - ~2000 alerts/yr, ~1% of those due to BHs
 - Timescale $t_E \sim (Lens mass)^{1/2}$

 \rightarrow Long-duration events (t_E > 120 days)

2. Follow up with high-precision (sub-mas) astrometry (e.g. HST)

- 1. Select BH candidates from photometric microlensing alerts
 - ~2000 alerts/yr, ~1% of those due to BHs
 - Timescale $t_E \sim (Lens mass)^{1/2}$
 - \rightarrow Long-duration events (t_E > 120 days)
- 2. Follow up with high-precision (sub-mas) astrometry (e.g. HST)
 - Astrometric deflection decays much more slowly than photometric magnification: ~10 $t_{\rm E}\,vs.$ ~1 $t_{\rm E}$

- 1. Select BH candidates from photometric microlensing alerts
 - ~2000 alerts/yr, ~1% of those due to BHs
 - Timescale $t_E \sim (Lens mass)^{1/2}$

 \rightarrow Long-duration events (t_E > 120 days)

2. Follow up with high-precision (sub-mas) astrometry (e.g. HST)

- Astrometric deflection decays much more slowly than photometric magnification: ~10 $t_{\rm E}\,vs.$ ~1 $t_{\rm E}$
 - \rightarrow ~10 epochs, spread over ~5-10 years

OGLE-2011-BLG-0462: First isolated black hole characterized with microlensing

Ground-based photometry + HST WFC3-UVIS astrometry Mass = $6\pm1 M_{\odot}$, Distance = $1.7\pm0.3 \text{ kpc}$, $v_{\text{trans}} = 38\pm5 \text{ km/s}$

1 detection out of sample of 5 consistent with population of 100 million Galactic BHs (Lam+22)

- 1. Select BH candidates from photometric microlensing alerts
 - ~2000 alerts/yr, ~1% of those due to BHs
 - Timescale $t_E \sim (Lens mass)^{1/2}$

 \rightarrow Long-duration events (t_E > 120 days)

2. Follow up with high-precision (sub-mas) astrometry (e.g. HST)

- Astrometric deflection decays much more slowly than photometric magnification: ~10 $t_{\rm E}\,vs.$ ~1 $t_{\rm E}$
 - \rightarrow ~10 epochs, spread over ~5-10 years

- 1. Select BH candidates from photometric microlensing alerts
 - ~2000 alerts/yr, ~1% of those due to BHs
 - Timescale $t_E \sim (Lens mass)^{1/2}$
 - \rightarrow Long-duration events (t_E > 120 days)

2. Follow up with high-precision (sub-mas) astrometry (e.g. HST) \$

- Astrometric deflection decays much more slowly than photometric magnification: ~10 $t_{\rm E}\,vs.$ ~1 $t_{\rm E}$
 - → ~10 epochs, spread over ~5-10 years

- 1. Select BH candidates from photometric microlensing alerts
 - ~2000 alerts/yr, ~1% of those due to BHs
 - Timescale $t_E \sim (Lens mass)^{1/2}$ → Long-duration events ($t_E > 120$ days) Throws away lots of black holes

2. Follow up with high-precision (sub-mas) astrometry (e.g. HST)

- Astrometric deflection decays much more slowly than photometric magnification: ~10 $t_{\rm E}\,vs.$ ~1 $t_{\rm E}$
 - → ~10 epochs, spread over ~5-10 years

Problem selecting BH candidates as long-t_E events: 1. Throw away lots of BHs of modest t_E 2. Selection effects (e.g. BH mass vs. kick velocity)

Lam et al. 2020

Current BH searches prioritize **purity** over **completeness**: a practical choice because astrometric follow-up is so expensive

1. Select BH candidates from photometric microlensing alerts

Long-duration events ($t_E > 120$ days)

2. Follow up with high-precision (sub-mas) astrometry (e.g. HST)

Throws away lots

of black holes

~10 epochs, spread over ~5-10 years

1. Select BH candidates from photometric microlensing alerts

• Long-duration events ($t_E > 120$ days)

2. Follow up with high-precision (sub-mas) astrometry (e.g. HST)

~10 epochs, spread over ~5-10 years

Roman's BH characterizing superpower: **simultaneous photometry + astrometry over wide FOV**

Throws away lots

of black holes

No longer limited to small and biased samples for follow-up

3 x 10⁵ events (Penny+19) → 3000 BHs

- 3×10^5 events (Penny+19) \rightarrow 3000 BHs
- Only 5-25 characterizable (Sajadian & Sahu 23)

- 3 x 10⁵ events (Penny+19) → 3000 BHs
- Only 5—25 characterizable (Sajadian & Sahu 23)
- Problem: 2.3 yr gap between first and last 3 seasons

Lam+23 white paper

Roman's Galactic Bulge Time Domain Survey will detect lots of black holes and characterize them if the 2.3 yr gap is filled

- 1 obs/day = 0.3 mas ast. precision every 10 days, provide good photometric coverage
- Enable the robust characterization of many more BHs

Characterizing the Galactic BH population will enable a broad range of astrophysics

An isolated BH has recently been characterized with microlensing, and Roman can characterize many more (esp. if observing gaps are filled)

Characterizing the Galactic BH population will enable a broad range of astrophysics

An isolated BH has recently been characterized with microlensing, and Roman can characterize many more (esp. if observing gaps are filled)

Other points of discussion and consideration:

- More stars in the IR = more crowding and blending
 - No methods yet for treating blended astrometry
 - (Pre- and post-) imaging with JWST?
- Bulge gaps in GBTDS need to be filled with other facilities
- Alerts + catalog of microlensing events (RAPID PIT, please?)

Questions, comments, ideas for collaboration: Email me at clam@carnegiescience.edu

Extra slides

1 BH detection out of 5 candidates consistent with 10⁸ isolated Galactic BHs

14

Correct for selection bias: longer events more likely to have BH lens

Weak constraint (for now): need a larger sample + more detections

Updated from Lam+22a

OGLE-2011-BLG-0462: First isolated black hole characterized with microlensing

Ground-based photometry + HST WFC3-UVIS astrometry =

Mass = $6\pm1 M_{\odot}$, Distance = $1.7\pm0.3 \text{ kpc}$, $v_{trans} = 38\pm5 \text{ km/s}$

Lam & Lu 2023 (see also Lam+22ab, Sahu+22, Mroz+22)