Exploring the obscured transient universe

Seppo Mattila (University of Turku, Finland)

Roman CCS White Paper

Exploring the obscured transient universe

Roman Core Community Survey High Latitude Wide Area Survey

Scientific Categories: stellar physics and stellar types; stellar populations and the interstellar medium; galaxies; supermassive black holes and active galaxies

Additional scientific keywords: Galaxy mergers; Interacting galaxies; Luminous infrared galaxies; Starburst galaxies; Ultraluminous infrared galaxies; Interstellar dust; Massive stars; Supernovae; Star formation; AGN host galaxies; Supermassive black holes

Submitting Author:

Name: Seppo Mattila Affiliation: University of Turku (UT), Finland Email: sepmat@utu.fi

List of contributing authors (including affiliation and email):

Thomas Reynolds (UT; thmire@utu.fi); Panagiotis Charalampopoulos (UT; pachar@utu.fi); Andreas Efstathiou (European U. Cyprus; A.Efstathiou@euc.ac.cy); Duncan Farrah (U. of Hawai'i; dfarrah@hawaii.edu); Ori Fox (STScl; ofox@stsci.edu); Suvi Gezari (STScl; sgezari@stsci.edu); Tuomas Kangas (UT; tjakan@utu.fi); Erkki Kankare (UT; e.kankare@utu.fi); Erik Kool (Stockholm U.; erik.kool@astro.su.se); Rubina Kotak (UT; rubina.kotak@utu.fi); Hanindyo Kuncarayakti (UT; hankun@utu.fi); Takashi Moriya (NAOJ; takashi.moriya@nao.ac.jp); Takashi Nagao (UT; takashi.nagao@utu.fi); Miguel Perez-Torres (IAA; torres@iaa.csic.e); Armin Rest (STScl; arest@stsci.edu); Stuart Ryder (Macquarie U.; Stuart.Ryder@mq.edu.au); Lou Strolger (STScl; strolger@stsci.edu); Sjoert van Velzen (U. of Leiden; sjoert@strw.leidenuniv.nl); Petri Väisänen (SAAO; petri@saao.ac.za)

• Luminous and ultraluminous ($L_{IR} > 10^{11} L_{\odot}$) IR galaxies radiate the bulk of their energy in the IR as re-radiation by warm dust, heated by a starburst and/or AGN

- Luminous and ultraluminous ($L_{IR} > 10^{11} L_{\odot}$) IR galaxies radiate the bulk of their energy in the IR as re-radiation by warm dust, heated by a starburst and/or AGN
- High star formation rates => ~0.3-30 core-collapse SNe yr⁻¹ not detectable by optical surveys due to extinction, need IR or radio to detect and study

Arp 299, LIRG at ~45 Mpc

- Luminous and ultraluminous ($L_{IR} > 10^{11} L_{\odot}$) IR galaxies radiate the bulk of their energy in the IR as re-radiation by warm dust, heated by a starburst and/or AGN
- High star formation rates => ~0.3-30 core-collapse SNe yr⁻¹ not detectable by optical surveys due to extinction, need IR or radio to detect and study

- Luminous and ultraluminous ($L_{IR} > 10^{11} L_{\odot}$) IR galaxies radiate the bulk of their energy in the IR as re-radiation by warm dust, heated by a starburst and/or AGN
- High star formation rates => ~0.3-30 core-collapse SNe yr⁻¹ not detectable by optical surveys due to extinction, need IR or radio to detect and study
- ~50% interacting/mergers: population of dust-obscured tidal disruption events?

- Luminous and ultraluminous ($L_{IR} > 10^{11} L_{\odot}$) IR galaxies radiate the bulk of their energy in the IR as re-radiation by warm dust, heated by a starburst and/or AGN
- High star formation rates => ~0.3-30 core-collapse SNe yr⁻¹ not detectable by optical surveys due to extinction, need IR or radio to detect and study
- ~50% interacting/mergers: population of dust-obscured tidal disruption events?

Ramos Almeida & Ricci (2017)

Arp 299-B

- Observed IR emission re-radiation by optically thick dust clouds in the polar regions of the AGN, which suffer from a relatively low dust extinction in the foreground
- Radio VLBI revealed a resolved, expanding jet with a viewing angle not consistent with the pre-existing AGN but likely powered by a tidally disrupted star by the SMBH

IR echo from surrounding dust

Graham & Meikle (1986)

Population of dust-obscured TDEs

- Survey with NEOWISE: 6 month cadence at 3.4 and 4.6 μm from 2013 to 2020
- 215 (U)LIRGs from the IRAS revised bright galaxy catalog of Sanders
- Select nuclear transients with ΔL>10⁴³ erg s⁻¹ and filter out sources showing stochastic IR variability
- => 5 smoothly evolving luminous transients incl. the dust-obscured Arp 299 TDE

Population of dust-obscured TDEs

- Blackbody temperatures consistent with transient IR echoes but more energetic than SNe or optical TDEs, also different from changing-look AGN
- Rate 10^{-(2.3-2.8)} LIRG⁻¹ year⁻¹ over order of magnitude higher than the rates of optical TDEs or extremely variable AGN - population of dust obscured TDEs in (U)LIRGs?

Reynolds, SM+2022

Population of dust-obscured TDEs

- Blackbody temperatures consistent with transient IR echoes but more energetic than SNe or optical TDEs, also different from changing-look AGN
- Rate 10-(2.3-2.8) LIRG-1 year-1 over order of magnitude higher than the rates of optical TDEs or extremely variable AGN:- population of dust obscured TDEs in (U)LIRGs?
- Recent searches in NEOWISE data have identified large samples of candidate TDE IR echoes over the whole sky with rates comparable to the optical TDE rates

Detectability of dust-obscured transients in HLWAS

- In Mattila+ White Paper we propose turning RST into an efficient discovery machine of dust-obscured transients thanks to wide FOV in the IR, spatial resolution, depth
- Dividing High Latitude Wide Area Survey into separate epochs ~6-12 months apart in time would allow the detection of slowly evolving transients over 1700 deg²
- Including the F213 filter in the survey would allow more efficient characterisation of the detected transients using additional color information

arcsec

Detectability of dust-obscured transients in HLWAS

• RST can detect in several filters large numbers of dust-obscured (A_V < 10 mag) core-collapse SNe up to 250 Mpc and some SNe with $A_V \sim 30$ mag up to 100 Mpc

Detectability of dust-obscured transients in HLWAS

- RST can detect in several filters large numbers of dust-obscured (A_V < 10 mag) core-collapse SNe up to 250 Mpc and some SNe with A_V ~ 30 mag up to 100 Mpc
- IR luminous TDE candidates are detectable in several filters up to z ~ 0.5; HLWAS could allow the characterisation of several 100s if divided into >2 epochs

- Ground-based near-IR observations, Spitzer and WISE have revealed dust-obscured SNe and TDE candidates within the nuclear regions of nearby galaxies
- Dividing the High Latitude Wide Area Survey into >2 epochs can allow characterisation of dust-obscured transients at a level not possible in any previous surveys
- Important implications, e.g., for SNe as probes of the cosmic star formation history and via characterisation of the dust-obscured TDE population for feedings of the SMBHs

IR echo from surrounding dust

Graham & Meikle (1986)

